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1 Introduction

Climate change is a global threat requiring a coordinated effort of all nations to sig-
nificantly and permanently reduce their emissions from burning fossil fuels. Several
climate summits accompanied by intense negotiations held over that past years and
even decades suggest that there is wide agreement on this necessity. Yet, a political
solution that all countries have committed to has not been reached. A major obstacle to
implementing climate policies at the global level might be that nations or regions differ
substantially along many dimensions such as their state of economic development, re-
liance on fossil fuels, and the climate damages they are projected to suffer. Therefore,
the incentives for implementing climate polices vary considerably across regions. Past
climate agreements have also seen the formation of coalitions being an integral part
of negotiations. Hence, it is important to understand how the formation of coalitions
determines the outcome of the political process and which policies remain feasible.

A theoretical analysis of optimal climate policies and their successful implementation
must therefore be based on a framework which incorporates three key features. First,
decisions on climate policies are taken by politically autonomous regions acting in their
own self-interest rather than for the common good. Second, these regions differ sub-
stantially along key economic and other dimensions and, therefore, have different in-
centives for choosing and implementing a particular climate policy. Third, countries
may not be willing to fully cooperate but instead form coalitions of regions with com-
mon political interests.

The present paper studies the existence and form of optimal climate policies in a model
with heterogeneous regions that incorporates all of the previous features. Our anal-
ysis draws on the multi-region framework and results developed in our earlier work
Hillebrand & Hillebrand (2019, 2022). In these papers, we focused on optimal climate
policies under full cooperation. The present paper extends this approach to a general
non-cooperative setup in which the fully cooperative scenario emerges as a special case.

Within this setup, we address the following specific questions. First, which climate
policies emerge in a purely non-cooperative setting and how do they differ from the
fully cooperative solution? Second, which policies emerge with partial cooperation and
the formation of coalitions? Third, how can regions be incentivized to cooperate by
means of side payments and how can such transfer policies be characterized?

Answering these and a number of related questions is the general contribution of this
paper. Specifically, we derive closed form solutions of optimal climate policies for both
the fully non-cooperative and the fully cooperative case and extend these results to
scenarios with partial cooperation where regions form coalitions. All these results take
a very simple and intuitive form. Third, we provide a complete characterization of
transfer schemes which redistribute the gains from cooperation such that each region
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has an incentive to cooperate. This defines a range of admissible transfers that forms
the basis for successful climate negotiations.

Our paper contributes to a large and growing literature studying the climate problem
from an economic perspective. Modern representatives of this field adopt the framework
of dynamic general equilibrium theory which is the standard approach in macroeco-
nomics.1 Based on this approach, the paper closest to ours is Hambel, Kraft & Schwartz
(2021), henceforth HKS who derive optimal climate policies corresponding to abatement
efforts in a fully non-cooperative setup. A main contribution of our work relative to HKS
and others is that we allow for regions to trade on international markets for capital and
fossil fuels not permitted in HKS. Using the implicit definition of the social cost of car-
bon from Nordhaus (2014), HKS also obtain a measure of the implied regional emissions
taxes. In this paper, we use a different concept of the social cost of carbon derived from
an explicitly defined planning problem in line with Golosov et al. (2014) and Hillebrand
& Hillebrand (2019). This permits to derive the optimal climate tax in closed form and
admits a straightforward economic interpretation.

Our work also contributes to the game theoretic literature on climate change advanced
by Harstad (2016, 2012) and Battaglini & Harstad (2016). These papers usually focus
on game theoretic aspects and, therefore, employ highly stylized models of both the
macroeconomy and the climate system. As a consequence, the cost of climate change
and damages are specified directly in a somewhat ad-hoc fashion rather than being
derived as an endogenous outcome of the interaction between the economic production
sector and the climate system. Relative to this approach, we maintain the full-fledged
growth framework of Hillebrand & Hillebrand (2019) featuring an explicit description of
the production process and the climate system. Despite this more detailed specification,
we retain the virtue of being able to derive analytical results including closed form
solutions of optimal climate policies under different levels of cooperation among regions.

A final strand of research studies scenarios of cooperation and non-cooperation based
on the RICE model developed in Nordhaus & Yang (1996). Setting aside the concep-
tual problems facing the RICE model and the derivation of its solution (cf. Denning &
Emmerling (2017) or Hillebrand & Hillebrand (2019)), all these studies are confined to
purely numerical results and analytical expressions can not be derived.2 In addition,
the RICE-framework severely restricts or even excludes trade among countries.

The paper is organized as follows. Section 2 introduces the model. Section 3 derives the
decentralized equilibrium under arbitrary climate policies. Section 4 studies the non-
cooperative solution which is compared to the efficient solution under full cooperation
in Section 5. Section 6 studies the case with partial cooperation under formation of

1Examples are Golosov et al. (2014), Hassler & Krusell (2012), or Gerlagh & Liski (2018).
2Models in this category include Bosetto et al. (2003), Eyckmans & Tulkens (2003), Eyckmans & Finus

(2003), or Finus et al. (2014).
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coalitions. Section 7 presents results from a numerical simulation study. Section 8
concludes. Mathematical proofs and computational details are placed in the appendix.

2 The Model

2.1 World economy

The world economy is divided into L ≥ 1 autonomous regions, indexed by ` ∈ L :=
{1, . . . ,L}. Time evolves in discrete periods t ∈ {0,1,2, . . .}. All variables determined prior
to the initial period t = 0 are treated as given parameters in the following setup. We
express the regional dependence of variables by a superscript ` and identify summa-
tion of this variable over all regions by a bar superscript. For example, X`

t will denote
fossil fuel consumption of region ` in period t such that X t := ∑

`∈L X`
t denotes global

emissions in period t. The major building blocks of the model are the production sector,
the climate model, and the consumption sector which are now explained in detail.

2.2 Production sector

Final output
In each region ` ∈ L a single representative firm produces a homogeneous final output
commodity Y `

t using capital K`
t and fossil fuels X`

t as inputs. The production technology
is of the general form

Y `
t = (1−D`

t )F`
t (K`

t , X`
t ). (1)

Here, D`
t ∈ [0,1] denotes endogenous climate damage which is further specified below.

Capital input K`
t is rented in the international capital market at price r t. Input factor

X`
t subsumes different kinds of fossil fuels such as coal, oil, etc. which are purchased

in the global resource market at price vt. Time-dependence of the production function
F`

t captures both regional population growth as well exogenous technological progress
of labor and energy efficiency.

Restrictions on technology
We impose the following standard restrictions on the production function F`

t in (1). The
left-side Inada condition (2) ensures that each factor will be employed at equilibrium.

Assumption 1
The function F`

t : R2+ −→ R+ is strictly increasing, strictly concave, and continuously
differentiable on R2++. The partial derivatives satisfy the boundary condition

lim
zi↘0

∂F`
t (z1, z2)
∂zi

=∞ for both i = 1,2 and all z = (z1, z2) ∈R2
++. (2)
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Extraction of fossil fuels
Region ` ∈ L possesses an initial stock of fossil fuels R`

0 ≥ 0 which can be extracted at
constant unit costs cx ≥ 0. Extraction of fossil fuels takes place in a resource sector
operated by a single firm which chooses an extraction sequence (X`,s

t )t≥0 with X`,s
t ≥ 0

denoting the extraction of fossil fuels in period t. Feasible extraction plans satisfy
∞∑

t=0
X`,s

t ≤ R`
0. (3)

Extracted resources X`,s
t are supplied to the global resource market in each period t. To

avoid trivialities, we impose the initial condition
∑
`∈LR`

0 > 0, i.e., initial world resources
of fossil fuels are strictly positive.

2.3 Climate model

Emissions
Emissions of CO2 are generated by using fossil fuels in production. Measuring fossil
fuel inputs X`

t in (1) directly in units of CO2, global emission in period t are given by

X t := ∑
`∈L

X`
t . (4)

Emissions prior to t = 0 are given and we assume that X−t = 0 for t > 0 sufficiently large
reflecting the fact that emissions before the industrial age were uniformly zero.

Atmospheric level of carbon
Climate damages in period t are determined by atmospheric carbon concentration St

relative to the pre-industrial level that depends on past aggregate emissions, i.e.,

St =
∞∑

n=0
δnX t−n. (5)

The non-negative sequence (δn)n≥0 in (5) determines the evolution and persistence of
emissions in the atmosphere. The specification (5) encompasses various climate models
in the literature including Golosov et al. (2014) or Gerlagh & Liski (2018).

Climate damages
Climate damages in region ` ∈ L at time t depend exclusively on carbon concentration
St given by (5) and are determined by the damage function D` :R+ −→ [0,1[,

D`
t = D`(St) := 1−exp{−γ`St}, γ` > 0. (6)

Regional differences in climate damages are captured by the region-specific parameter
γ`, ` ∈ L. The exponential form (6) is also widely used in the literature, cf. again Golosov
et al. (2014) or Gerlagh & Liski (2018). Golosov et al. (2014) show that this specification
approximates well the damage function of the DICE-model ((Nordhaus & Sztorc 2013))
in the empirically relevant range.
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2.4 Consumption sector

Representative consumer
The consumption sector in region ` ∈ L consists of a single representative household who
supplies capital K`,s

t to the global capital market in each period t. Initial capital K`,s
0

in period t = 0 is taken as given in the decision. In addition, the consumer is entitled to
receive all profits from domestic firms and transfers from the government.

Consumer preferences
The household’s preferences over non-negative consumption sequences (C`

t )t≥0 are rep-
resented by a standard time-additive utility function

U((C`
t )t≥0)=

∞∑
t=0

βtu(C`
t ) where u(C)=

{
C1−σ
1−σ for σ> 0,σ 6= 1

log(C) for σ= 1.
(7)

The discount factor satisfies 0 < β < 1. The previous specification is widely used in
models of climate change. It is key for the separability between efficiency and optimality
exploited in Hillebrand & Hillebrand (2019) to derive an optimal climate policy.

2.5 Summary of the economy

The economy E introduced in the previous sections can be summarized by its regional
structure, production parameters, climate model, and consumer parameters. Formally,

E =
〈
L,

(
(F`

t )t≥0

)
`∈L , cx, (δn)n≥0, (γ`)`∈L,β,σ

〉
. (8)

In addition, the initial distribution of capital (K`,s
0 )`∈L and initial stocks of fossil fuels

(R`
0)`∈L are given as well as aggregate emissions (X−t)t>0 prior to t = 0.

3 Decentralized Equilibrium

The decentralized equilibrium reconciles optimal behavior of consumers and produc-
ers in each region with market clearing on international markets. The equilibrium is
determined for a given climate policy chosen by each region to be specified next.

3.1 Climate policy

Climate tax
Each region ` ∈ L levies a tax τ`t on regional emissions in period t to be paid by the
final sector. The tax sequence (τ`t )t≥0 is the first building block of a climate policy.
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This sequence may consist of given exogenous numbers or can be generated by a time-
invariant rule that depends on endogenous variables.

Transfers
All tax revenue is returned to consumers as a lump sum transfer. As for the distribution
of transfers across regions, we distinguish the cooperative and the non-cooperative case.

In the non-cooperative case, each region simply rebates its tax revenue to domestic
consumers implying that consumers in region receive a transfer in period t equal to

T`
t = τ`t X`

t for each ` ∈ L. (9)

In the cooperative case, regions pool their tax revenue and agree on a transfer policy
θ : L−→R,` 7→ θ` satisfying

∑
`∈Lθ` = 1 which determines the transfer share θ` received

by region `. Transfers received by consumers in region ` at time t then follow as

T`
t = θ`

∑
k∈L

τk
t X k

t for each ` ∈ L. (10)

The assumption of time-invariant transfers shares imposes no restriction since con-
sumer behavior depends exclusively on lifetime transfers defined below. Any time-
dependent distribution of transfers is therefore equivalent to a time-invariant transfer
policy in the sense that it implies the same consumption behavior.

3.2 Producer behavior

Final sectors
The representative firm in the final sector chooses non-negative factor inputs in period
t to maximize its period-profit, taking climate damages and prices for capital, labor,
and fossil fuels as given. The latter includes the tax on emissions. The formal problem
determining profits Π`

t in period t reads:

Π`
t = max

K`,X`≥0

{
(1−D`

t )F`
t (K`, X`)− r tK`− (vt +τ`t )X`

}
. (11)

Profit maximizing factor demand (K`
t , X`

t ) solves the standard first order conditions3

(1−D`
t )∂K F`

t (K`
t , X`

t )= r t (12a)

(1−D`
t )∂X F`

t (K`
t , X`

t )= vt +τ`t . (12b)

Profits determined by (11) are fully transferred to consumers in region `.

Resource sector
Unlike the final sector, the resource sector solves an intertemporal decision problem

3We denote by ∂K F(K , X ) := ∂F(K ,X )
∂K and ∂X F(K , X ) := ∂F(K ,X )

∂X the partial derivatives of a function F.
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involving a stream of future profits. To discount these payments to period t = 0, we
define the time t-discount factor (Arrow-Debreu price) as

qt :=
t∏

n=1
r−1

n for each t = 0,1,2, . . . where q0 = 1. (13)

The resource firm’s discounted profit stream in t = 0 generated by an optimal extraction
sequence is then determined as

Π`
x := max

(X`,s
t )t≥0

{ ∞∑
t=0

qt (vt − cx) X`,s
t

∣∣∣ (3) holds, X`,s
t ≥ 0 for all t ≥ 0

}
. (14)

Applying standard arguments (cf. Hillebrand & Hillebrand (2019)), the existence of an
optimal extraction sequence requires the Hotelling rule

vt − cx = r t(vt−1 − cx) for all t = 1,2,3, . . . (15)

under which maximum profits (11) are given by

Π`
x = (v0 − cx)R`

0. (16)

3.3 Consumer behavior

In each period t, the representative consumer in region ` receives factor income from
supplying capital K`,s

t formed in the previous period t−1. In addition, the consumer
collects profitsΠ`

t from the final sector andΠ`
x,t = (vt−cx)X`,s

t from the domestic resource
sector as well as transfers T`

t from the government. Consumption C`
t and newly formed

capital K`,s
t+1 satisfy the period budget constraint

K`,s
t+1 =Π`

t + r tK
`,s
t + (vt − cx)X`,s

t +T`
t −C`

t . (17)

We interpret K`,s
t+1 as the consumer’s net asset position and, therefore, do not exclude

negative values. To exclude Ponzi-schemes, however, we impose the usual condition
limt→∞ qtK

`,s
t+1 ≥ 0. Using this and (16) and defining lifetime transfer income T` :=∑∞

t=0 qtT`
t and the discounted stream of final profits Π` := ∑∞

t=0 qtΠ
`
t we can solve (17)

forward to obtain the lifetime budget constraint

∞∑
t=0

qtC`
t ≤Π`+ r0K`,s

0 + (v0 − cx)R`
0 +T`. (18)

The consumer chooses consumption (C`
t )t≥0 subject to (18) to maximize lifetime utility

U defined in (7). Optimality is determined by equality of (18) and the Euler equation

C`
t+1 = C`

t (βr t+1)
1
σ for all t = 0,1,2, . . . (19)
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3.4 Market clearing and equilibrium

Market clearing
In each period t, capital and fossil fuels are traded on international markets. The
market clearing conditions for period t read:∑

`∈L
K`

t
!= ∑
`∈L

K`,s
t and

∑
`∈L

X`
t

!= ∑
`∈L

X`,s
t . (20)

Since the Hotelling rule (15) makes resource firms indifferent between the timing of
extraction, the extraction sequence (X`,s

t )t≥0 will, in general, be indeterminate at equi-
librium. Due to (17), the same will be true of regional capital supply (K`,s

t+1)t≥0. However,
regional consumption of fossil fuels (X`

t )t≥0 is uniquely determined at equilibrium and
satisfies the world resource constraint

∞∑
t=0

∑
`∈L

X`
t =

∞∑
t=0

X t ≤ R0 := ∑
`∈L

R`
0. (21)

Writing profits (11) as Π`
t =Y `

t −r tK`
t −(vt+τ`t )X`

t and exploiting the definition of trans-
fers (9) or (10) we can sum the consumer’s budget constraint (17) over all regions ` and
combine the result with the market clearing conditions (20) to obtain the evolution of
world capital as ∑

`∈L
K`

t+1 =
∑
`∈L

Y `
t − cx

∑
`∈L

X`
t −

∑
`∈L

C`
t . (22)

Equation (22) can also be interpreted as a market clearing condition for the world com-
modity market.
Finally, for purposes of a compact definition of equilibrium we combine (4), (5), and (6)
to obtain regional climate damages as a function of past regional emissions given by

D`
t = 1−exp

(
−γ`

∞∑
n=0

δn
∑
`∈L

X`
t−n

)
for all ` ∈ L. (23)

Definition of equilibrium
We are now in a position to formally define a decentralized equilibrium for this economy.

Definition 1
An equilibrium of E consists of climate taxes and transfers ((τ`t ,T`

t )`∈L)t≥0, an allocation
A∗ = ((K`∗

t , X`∗
t ,C`∗

t )`∈L)t≥0, and prices P∗ = (r∗t ,v∗t )t≥0 such that for all t = 0,1,2, . . .:

(i) Factor inputs (K`∗
t , X`∗

t ) solve conditions (12) for given prices (r∗t ,v∗t ), taxes τ`t ,
and damages D`

t determined by (23) for each region ` ∈ L.

(ii) Prices P∗ satisfy the Hotelling rule (15) and global fossil fuel consumption is con-
sistent with the world resource constraint (21).
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(iii) Taxes and transfers and emissions are consistent with (9) or (10).

(iv) Regional consumption (C`∗
t )t≥0 satisfies the Euler equation (19) and constraint

(18) with equality with discount factors (q∗
t )t≥0 determined by (13).

(v) Initial capital (K`
0)`∈L satisfies the capital market clearing condition (20) for t = 0

and (22) holds for all t with output determined by (1) and damages by (23).

Properties of equilibrium
The form of the utility function (7) and a frictionless capital market imply a world-
consumption distribution that is constant over time. Thus, each region acquires a con-
stant share of world consumption in each period. We state this result formally in the
next lemma. The proof is analogous to Hillebrand & Hillebrand (2019) and is omitted.

Lemma 1
Equilibrium consumption of each region ` ∈ L is a constant fraction µ` ∈]0,1[ of world
consumption C∗

t :=∑
`∈LC`∗

t in each period t, i.e.,

C`∗
t =µ`C∗

t where µ` = Π`+ r0K`,s
0 + (v0 − cx)R`

0 +T`∑
k∈L

(
Πk + r0Kk,s

0 + (v0 − cx)Rk
0 +Tk

) . (24)

4 The Non-Cooperative Equilibrium

This section considers the non-cooperative equilibrium in which each region ` sets its
climate tax policy τ` = (τ`t )t≥0 to maximize domestic welfare, taking as given the deci-
sions of other regions. In this non-cooperative scenario, transfers are determined by
(9) excluding net transfers between regions. The regionally optimal tax policy can be
derived in two steps. In the first step, each region chooses a regionally optimal alloca-
tion taking emissions from other regions as well as global prices for capital and fossil
fuels as given. The second step then determines regional climate taxes such that the
regionally optimal allocation materializes as a decentralized equilibrium.

4.1 Regional planning problem

Constraints
The planner in region ` takes local initial stocks of capital K`,s

0 and fossil fuels R`
0 ≥ 0

as well as aggregate emissions (X−t)t≥1 prior to t = 0 as fixed parameters. Likewise,
the sequence (X−`

t )t≥0 of future emissions X−`
t :=∑

k∈L\{`} X k
t from other regions as well

as international prices P = (r t,vt)t≥0 are taken as given. We assume that these prices
satisfy the Hotelling rule (15) as they will at equilibrium and define (qt)t≥0 by (13).
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A crucial deviation from the decentralized solution is that the planner in region ` takes
into account the impact of its own emissions and those of other regions on local climate
damage D`

t determined by (23). Using the previous notation, we write damages as

D`
t = 1−exp

{
−γ`

∞∑
n=0

δn

(
X`

t−n + X−`
t−n

)}
for ` ∈ L. (25)

The regional planner chooses factor inputs to the production technology (1) in each pe-
riod t. The decision also involves the accumulation of capital and extraction of fossil
fuels. However, these variables are not necessarily fully employed in domestic produc-
tion but can also be traded on global capital and resource markets at the given prices.
As before, a superscript ’s’ signifies variables supplied to these markets. The regional
stock of capital then evolves according to the resource condition

K`,s
t+1 = (1−D`

t )F`
t (K`

t , X`
t )+ r t

(
K`,s

t −K`
t
)+vt

(
X`,s

t − X`
t
)− cxX`,s

t −C`
t . (26)

It follows from (3) and the Hotelling rule (15) that the extraction sequence (X`,s
t )t≥0 cho-

sen by region ` generates total discounted revenue given again by (16). Using this and
imposing again the No-Ponzi condition limT→∞ K`,s

T+1qT ≥ 0, one can solve (26) forward
to obtain the lifetime budget constraint

∞∑
t=0

qt

(
r tK`

t +vtX`
t +C`

t − (1−D`
t )F`

t (K`
t , X`

t )
)
≤ r0K`,s

0 + (v0 − cx)R`
0. (27)

This condition somewhat parallels the consumer’s condition (18). The main difference is
that the planer chooses inputs to final production directly and, more importantly, takes
into account the impact of fossil fuel inputs X`

t on domestic climate damages via (25).

The regional planning problem
Using (25) and (27) the planning problem of region ` ∈ L can now be stated as follows.

max
(K`

t ,X`
t ,C`

t )t≥0

{
U((C`

t )t≥0)
∣∣∣ (25) and (27) hold, K`

t , X`
t ,C`

t ≥ 0 for all t = 0,1,2, . . .
}
. (28)

Clearly, the solution to (28) depends on the given emissions (X−`
t )t≥0 of other regions

and prices P = (r t,vt)t≥0. Crucially, the planner is a ’price-taker’ on international mar-
kets and does not take into account the impact of his decision on the determination of
these prices as equilibrium outcomes.

Solution to the problem
Problem (28) is a constrained optimization problem that can be solved by standard
Lagrangean methods. The details can be found in Section A.1 in the Appendix. This
way, on can derive the following optimality conditions which characterize the solution
in addition to the technological and resource constraints. First, consumption satisfies
the Euler equation (19) and (27) holds with equality. Second, the marginal product of
capital in period t equals its return r t such that (12a) holds. Finally, resource input in
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period t earns a marginal product equal to its price vt plus the total discounted marginal
damage in production:

(1−D`
t )∂X F`

t (K`
t , X`

t )= vt +
∞∑

n=0
βn

(
C`

t+n/C`
t

)−σ
δnγ

`Y `
t+n. (29)

Intuitively, the damage-related term in (29) consists of three factors. First, a discount
factor βn (

C`
t+n/C`

t
)−σ serving to measure damages in t+n in units of time t consump-

tion. Second, the term δn which measures the quantity of emissions at time t that are
still in the atmosphere at time t+n. Third, the marginal loss in domestic output Y `

t+n at
time t+n caused by an additional unit of carbon in the atmosphere. Summation of these
factors over all periods t, t+1, t+2, . . . then gives the total domestic damage generated
by one additional unit of emissions in period t.
For later reference, we state the previous result formally in the next lemma.

Lemma 2
Let prices P = (r t,vt)t≥0 and emissions (X−`

t )t≥0 of other regions be given. If the regional
allocation (K`

t , X`
t ,C`

t )t≥0 solves (12a), (19), and (29) with D`
t determined by (25) for all

t = 0,1,2, . . . and satisfies (27) with equality, then it is a solution to the problem (28).

4.2 Non-cooperative solution as a Nash equilibrium

The market maker
In a non-cooperative equilibrium the decisions of all regions ` ∈ L determined as a so-
lution to (28) are mutually compatible in the sense that emissions of all other regions
are correctly anticipated and market clearing on global capital and resource markets
obtains in each period t. To formalize this idea, we embed the previous structure into
the setup of a non-cooperative game and invoke the formal definition of a Nash equilib-
rium. Since the regional planning problem involves not only the decision variables from
other regions, but also the prices of capital and fossil fuels, we introduce an additional
player ` = 0 that will be referred to as a ’market-maker’. This player chooses prices
P = (vt, r t)t≥0 as his strategy subject to the Hotelling rule (15). Since the Hotelling rule
determines all future prices (vt)t>0 from the initial choice v0 and capital returns and
choosing the sequence (r t)t≥1 is equivalent to choosing the AD-prices (qt)t≥0, we can
identify the choice of player `= 0 with the strategy (v0, r0, (qt)t≥0).

Decision problem of the market maker
We now set up the market maker’s decision problem such that market clearing obtains
along the Nash equilibrium defined below. Suppose player ` = 0 bases his choice of
prices on the ’mismatch’ between demand and supply on international markets deter-
mined by the allocations chosen by players. To this end, the resource price v0 is chosen
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to maximize the value of excess demand in the resource market.4 Formally, the price is
a solution to the linear problem

max
v0

{
(v0 − cx)

( ∞∑
t=0

∑
`∈L

X`
t −R0

)∣∣∣cx ≤ v0 ≤ vmax
0

}
. (30a)

Here, vmax
0 > 0 is some arbitrary upper bound chosen sufficiently large to exceed any

possible equilibrium value vnc
0 defined below. Thus, the market maker sets the resource

price to its minimal value v0 = cx if the total demand for resources
∑∞

t=0
∑
`∈L X`

t summed
over all regions and periods is lower than the available resource stock R0. Conversely,
if resource demand exceeds this stock, the resource price is set to its maximum value
v0 = vmax

0 . It follows that problem (30a) has an interior solution cx < v0 < vmax
0 (in fact,

infinitely many) if and only if the resource constraint (21) holds with equality such that
total demand exhausts the global stock.

In a similar fashion, the market maker determines r0 and the values qt for t = 0,1,2, . . .
based on the excess demand for capital in t = 0 and in the consumption good market in
period t, respectively. Formally, these problems read

max
r0

{
r0

∑
`∈L

(
K`

0 −K`,s
0

)∣∣∣0≤ r0 ≤ rmax
0

}
(30b)

and, for each t = 0,1,2, . . .

max
qt

{
qt

∑
`∈L

(
C`

t + cxX`
t +K`

t+1 − (1−D`
t )F`

t (K`
t , X`

t )
)∣∣∣0≤ qt ≤ qmax

t

}
. (30c)

Again, the upper bounds rmax
0 and qmax

t are chosen sufficiently large and the initial
distribution of capital (K`,s

0 )`∈L entering (30b) is given and climate damage D`
t in (30c)

determined by (25) for each `. Linearity of each of the underlying problems then implies
that existence of interior solutions to (30b) and (30c) is equivalent to the capital market
clearing condition in (20) for t = 0 and (22) for each t = 0,1,2, . . .5

Definition of non-cooperative equilibrium
Using L0 := {0}∪L as the set of players we can now define a Nash equilibrium as follows.

Definition 2
A non-cooperative (Nash) equilibrium of E is an allocation Anc = ((K`,nc

t , X`,nc
t ,C`,nc

t )`∈L)t≥0

and prices Pnc = (rnc
t ,vnc

t )t≥0 such that the following holds:

(i) The regional allocation (K`,nc
t , X`,nc

t ,C`,nc
t )t≥0 chosen by player ` ∈ L solves the

planning problem (28) given prices Pnc and emissions (X−`,nc
t )t≥0 of other regions.

4This idea is used in finite-dimensional Walrasian economies to construct a price correspondence of
which equilibrium prices obtain as fixed points. Details of this approach can be found, e.g., in Mas-Colell,
Whinston & Green (1995, Section 17.C).

5Since the choices of r0, v0, and (qt)t≥0 are independent, one could also determined them simultane-
ously by maximizing the sum of (30a), (30b), and (30c) summed over all t = 0,1,2, . . .
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(ii) Prices Pnc chosen by player `= 0 satisfy the Hotelling rule (15) and (vnc
0 , rnc

0 ) and
qnc

t defined by (13) are solutions to the decision problems (30a)-(30c) for all t ≥ 0.

It is worth noting that (21) may or may not bind along the non-cooperative equilibrium.
If it does, fossil fuels carry a scarcity rent implying v0 > cx and, by (15), vt > cx for all t.
On the other hand, if

∑∞
t=0

∑
`∈L X`,nc

t < R0, the solution to problem (30a) satisfies v0 = cx

and implies vt = cx for all t by (15). In this case, fossil fuels are abundant and there is
no scarcity rent.

4.3 Time-consistency of the non-cooperative solution

In this section we show that the non-cooperative equilibrium is time-consistent in the
sense that in each future period t = N ≥ 1, each player if permitted to re-optimize will
stick to his original strategy provided everybody else does. In other words, the Nash
equilibrium of the non-cooperative game defined above satisfies the one-shot deviation
principle, i.e., no player can increase their pay-off by singularly deviating from the equi-
librium strategy in any period. Hence, the non-cooperative equilibrium from Definition
2 is time-consistent or also subgame perfect.
To show this formally, define the wealth of the consumer in region ` ∈ L at the beginning
of period t = 0,1,2, . . . as

W`
t := r tK

`,s
t + (vt − cx)R`

t (31)

where R`
t is the regional resource stock at the beginning of period t determined recur-

sively as

R`
t+1 = R`

t − X`,s
t for all t = 0,1,2, . . . (32)

Intuitively, wealth W`
t consist of capital income and the value of the current resource

stock net of extraction costs in period t. Note that initial wealth W`
0 appears on the

right-hand side of the lifetime budget constraint (27).
Combining definition (31) and (32) with the period-budget constraint (17), the evolution
of the wealth sequence (W`

t )t≥0 is determined recursively by the equation

W`
t+1 = r t+1

(
W`

t + (1−D`
t )F`

t (K`
t , X`

t )− r tK`
t −vtX`

t −C`
t

)
for all t = 0,1,2, . . . (33)

with the initial value W`
0 determined by (31) from the given initial values K`,s

0 and R`
0.

Solving (33) forward one obtains initial wealth at the beginning of time t = N > 0 as:

qNW`
N =

N−1∑
t=0

qt

(
(1−D`

t )F`
t (K`

t , X`
t )−C`

t − r tK`
t −vtX`

t

)
+W`

0 . (34)

Observe that although the consumer’s net capital position K`,s
t and regional extraction

X`,s
t are, in general, indeterminate at equilibrium, the consumer’s wealth position is
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uniquely determined recursively by (34).
Consider now the behavior of the consumer in region ` ∈ L in some period t = N ≥ 1.
Let previous wealth W`

N−1 and the strategies of all regions (K`
t , X`

t ,C`
t )0≤t<N as well as

the sequence (r t,vt)0≤t<N chosen by the market maker prior to period t = N be given.
In particular, aggregate emissions (X t)t<N prior to period t = N are given. Suppose in
period t = N each player ` ∈ L chooses an updated strategy (C`

t , X`
t ,K`

t )t≥N to maximize
the remaining utility

UN((C`
t )t≥N)=

∞∑
t=N

βtu(C`
t ) (35)

subject to the updated time N lifetime budget constraint
∞∑

t=N
qt,N

(
C`

t + r tK`
t +vtX`

t − (1−D`
t )F`

t (K`
t , X`

t )
)
≤W`

N (36)

where qt,N := qt/qN = ∏t
n=N+1 r−1

n and W`
N determined by (34) or, equivalently, by (33)

setting t = N −1. The time-N re-optimization problem of player ` ∈ L then reads:

max
(C`

t ,X`
t ,K`

t )t≥N

{
UN((C`

t )t≥N)|C`
t ,K`

t , X`
t for all ≥ 0, t ≥ N, (36) holds

}
. (37)

The following lemma describes the properties of solutions to (37). The proof parallels
the one of Lemma 2 and is therefore omitted.

Lemma 3
If the sequence (C`

t , X`
t ,K`

t )t≥N satisfies (12a), (19), and (29) with D`
t determined by (25)

for all t ≥ N as well as (36) with equality, then it is a solution to problem (37).

In a similar vein, suppose the market maker `= 0 is permitted to update his strategy as
well by choosing values (r t,vt)t≥N subject to the Hotelling rule (15). Clearly, this choice
is equivalent to choosing values vN and rN and qt,N for all t > N. Suppose these choices
are made to maximize the values (vN − cx)

∑
`∈L

(
R`

N −∑∞
t=N X`

t
)
, rN

(∑
`∈LK`

N −K s
N

)
, and

qt,N
∑
`∈L

(
C`

t + r tK`
t +vtX`

t − (1−D`
t )F`

t (K`
t , X`

t )
)

for all t ≥ N, respectively. Here, K s
N :=∑

`∈L
(
(1−D`

N−1)F`
N−1(K`

N−1, X`
N−1)−C`

N−1−cxX`
N−1

)
is world capital supply in period N.

Combining this behavior with that of players ` ∈ L, we can define a time N Nash equi-
librium as a list of continuation strategies (C`

t , X`
t ,K`

t )t≥N for each ` ∈ L and (r t,vt)t≥N

for `= 0 which solve the updated decision problems at time N given previous decisions.
Now suppose until time N−1, all players followed the strategies prescribed by the non-
cooperative equilibrium. Formally, each player ` ∈ L chose (K`,nc

t , X`,nc
t ,C`,nc

t )0≤t<N as
their strategy and the market maker `= 0 chose (rnc

t ,vnc
t )0≤t<N . Then, the continuation

strategies (K`,nc
t , X`,nc

t ,C`,nc
t )t≥N for each player ` ∈ L are clearly feasible, provided the

market maker chooses (rnc
t ,vnc

t )t≥N . Moreover, these strategies satisfy the optimality
conditions from Lemma 3, implying that each player will find it advantageous to stick
to these strategies, provided everybody else does. This establishes the following main
result of this section.
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Proposition 1
Let N ≥ 0 be arbitrary and suppose all players ` ∈ L0 followed the strategies of the
non-cooperative equilibrium up to time t = N − 1. Then, the continuation strategies
(K`,nc

t , X`,nc
t ,C`,nc

t )t≥N for each player ` ∈ L and (rnc
t ,vnc

t )t≥N for player `= 0 constitute a
non-cooperative (Nash) equilibrium at stage t = N.

We remark that a stronger version of this result would be a Markov-perfect equilibrium
where all strategies are generated by time-invariant decision rules defined on a suitable
state space. This concept is widely used in game-theoretic studies of the climate prob-
lem, see, e.g., (Harstad 2016). In our setting, however, with time-varying production
functions (1) due to population growth, technological progress, etc., it is in general not
possible to obtain such a time-invariant structure. Therefore, the subgame-perfectness
demonstrated in this section appears to be the strongest result possible in our setting.

4.4 Regionally optimal climate policy

Implementing the non-cooperative solution
Returning to the decentralized equilibrium discussed in Section 3, we seek to imple-
ment the non-cooperative solution as a decentralized equilibrium. This requires de-
termining the climate tax policy (τ`t )t≥0 for each region ` such that the equilibrium
allocation and price system satisfy A∗ = Anc and P∗ = Pnc. Formally, this can be accom-
plished by ensuring the optimality conditions determining the non-cooperative solution
coincide with the equilibrium conditions from Definition 1.

Regionally optimal climate tax
Along the non-cooperative equilibrium, the regional lifetime budget constraint (27)
holds with equality. Using the definition of profits in (11) and the form of transfers
(9), we obtain

(1−D`
t )F`

t (K`
t , X`

t )− r tK`
t −vtX`

t =Π`
t +T`

t . (38)

Using this in (27) we obtain the consumer’s lifetime budget constraint (18) with equality
as required. Furthermore, invoking Lemma 2, we see that the Euler equations (19) are
automatically satisfied and so is the optimality condition (12a) with respect to capital
input. The price sequence Pnc satisfies the Hotelling rule (15) by assumption. Finally,
comparing the optimality conditions (12b) and (29) wit respect to fossil fuel inputs, we
can see that implementing the regionally optimal solution to (28) requires choosing the
regional climate tax according to the rule

τ`t =
∞∑

n=0
βn

(
C`

t+n/C`
t

)−σ
δnγ

`Y `
t+n. (39)

Hence, if taxes are determined by the tax rule (39), all conditions determining the de-
centralized and non-cooperative solution coincide. We state the previous result formally
in the following theorem.
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Theorem 1
Suppose each region ` ∈ L chooses a climate tax policy (τ`t )t≥0 according to the rule
(39) and consumers in region ` receive transfers determined by (9). Then, the induced
equilibrium allocation and prices satisfy A∗ = Anc and P∗ = Pnc.

By Lemma 1, equilibrium consumption satisfies C`
t = µ`Ct permitting to replace the

discount factor in (39) by aggregate consumption. This yields (39) in equivalent form

τ`t =
∞∑

n=0
βn

(
Ct+n/Ct

)−σ
δnγ

`Y `
t+n. (40)

Finally, along a balanced growth path where regional output and consumption grow at
constant and identical rate g, (39) reduces to

τ`t = γ`Y `
t

∞∑
n=0

(
β(1+ g)1−σ

)n
δn. (41)

The formula (41) is an extension of the main result in Golosov et al. (2014) who derive
the globally optimal climate tax in closed form and show that it can be expressed as a
constant fraction of output determined by climate parameters and the discount factor.

5 Equilibrium under Full Cooperation

5.1 The efficient solution

The global planning problem
This section compares the previously derived non-cooperative solution to the globally
efficient solution that obtains under full cooperation between regions. Intuitively, the
non-cooperative solution is what the world is doing while the cooperative solution is
what it should be doing to combat climate change.
Hillebrand & Hillebrand (2019) show that the efficient solution maximizes utility of a
world representative consumer on the set of feasible allocations determined by techno-
logical constraints and the climate system. Since the present framework differs from
the one used in Hillebrand & Hillebrand (2019), we briefly restate this problem here.
Consider a global planner choosing an aggregate allocation A = ((K`

t , X`
t )`∈L,Ct)t≥0 of

production factors for each region along with aggregate global consumption. The term
’aggregate’ signified by the bar notation reflects the fact that the allocation A specifies
only aggregate consumption, but no its distribution across regions. Note however that
this aggregation only refers to consumption while production inputs are specified sepa-
rately for all regions.
The planner takes into account the impact of emissions on climate damage via (23), the
global resource constraint (21), and the feasibility constraint

Ct ≤
∑
`∈L

(
(1−D`

t )F`
t (K`

t , X`
t )− cxX`

t −K`
t+1

)
for all t = 0,1,2, . . . (42)
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Furthermore, the initial capital allocation (K`
0)`∈L is subject to the initial condition∑

`∈L
K`

0 ≤ K s
0 := ∑

`∈L
K`,s

0 . (43)

Based on these constraints, the global planner maximizes utility of a fictitious world
representative consumer who consumes aggregate consumption Ct in each period t.
Formally, the global planning problem can be stated as:

max
((K`

t ,X`
t )`∈L,Ct)t≥0

{
U((Ct)t≥0)

∣∣∣ (21), (23), (42), (43) hold, K`
t , X`

t ,Ct ≥ 0 for all t ≥ 0,` ∈ L
}
.

(44)
We denote the solution to (44) by Aeff = ((K`,eff

t , X`,eff
t )`∈L,Ceff

t )t≥0 and refer to it as the
efficient aggregate allocation. The following lemma characterizes the efficient solution
formally. The proof can be found in Section A.2 in Appendix A.

Lemma 4
If the aggregate allocation A = ((K`

t , X`
t )`∈L,Ct)t≥0 satisfies the feasibility conditions (42)

and (43) with equality for all t = 0,1,2, . . ., the intratemporal efficiency conditions

(1−D`
t )∂K F`

t (K`
t , X`

t )= (1−Dk
t )∂K Fk

t (Kk
t , X k

t ) (45a)

(1−D`
t )∂X F`

t (K`
t , X`

t )= (1−Dk
t )∂X Fk

t (Kk
t , X k

t ) (45b)

for all k,` ∈ L, the intertemporal efficiency conditions

βC−σ
t+1

C−σ
t

(1−D`
t+1)∂K F`

t+1(K`
t+1, X`

t+1)= 1 (45c)

βC−σ
t+1

C−σ
t

(
(1−D`

t+1)∂X F`
t+1(K`

t+1, X`
t+1)− cx − τ̂t+1

)
= (1−D`

t )∂X F`
t (K`

t , X`
t )− cx − τ̂t (45d)

for all ` ∈ L with damages determined by (23) and

τ̂t :=
∞∑

n=0
βn

(
Ct+n/Ct

)−σ
δn

∑
k∈L

γkY k
t+n for all t = 0,1,2, . . . (46)

as well as the transversality condition limT→∞βTC−σ
T

∑
`∈LK`

T+1 = 0 and the resource
constraint (21), then it is a solution to (44).

Intuitively, the efficient solution equates marginal products across all regions in each
period and also intertemporally. Equation (45a) implicitly determines a (shadow) capi-
tal return r̂ t which ensures an efficient world capital allocation. This return can be used
in (45c) ensuring intertemporally efficient consumption and capital accumulation. Fur-
thermore, condition (45b) allocates fossil fuel usage efficiently to equate marginal prod-
ucts across world regions. This property can be used to define a shadow resource price
v̂t := (1−D`

t )∂X F`
t (K`

t , X`
t )− τ̂t corresponding to the marginal product of the resource

in production net of the total discounted damage captured by τ̂t. With this definition,
equation (45d) corresponds to the Hotelling rule (15) ensuring efficient extraction of the
resource over time. In particular, if the resource constraint (21) is non-binding at the
optimal solution, then v̂t = cx, as shown in the appendix.
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5.2 Implementing the efficient solution

We now explore conditions under which the decentralized allocation A∗ is efficient.
Formally, the equilibrium allocation is efficient if and only if for all t = 0,1,2, . . .

K`∗
t = K`,eff

t and X`∗
t = X`,eff

t for all ` ∈ L and
∑
`∈L

C∗
t = Ceff

t . (47)

Climate tax policies under which (47) holds will be termed efficient and denoted by
(τeff

t )t≥0. Note that such a policy will necessarily be uniform across all regions. We now
show that the efficient climate tax policy takes the following explicit form

τeff
t :=

∞∑
n=0

βn
(
Ceff

t+n/Ceff
t

)−σ
δn

∑
k∈L

γkY k,eff
t+n for all t = 0,1,2, . . . . (48)

A similar result is derived in Hillebrand & Hillebrand (2019) in a slightly different
setup. To prove this claim, we must show that the equations from Lemma 4 generating
the efficient allocation are satisfied at equilibrium if taxes are chosen based on (48).
This result holds independently of how transfers (T`

t )t≥0 are determined.
The final sector’s optimality condition (12a) implies equalization of capital returns (45a).
Further, under uniform taxation, optimality condition (12b) implies that marginal prod-
ucts of fossil fuels equalize as required by (45b). Further, the Euler equation (19) can be
aggregated and combining it with (12a) to replace the return on capital by its marginal
product yields the aggregate Euler equation (45c).6 Further, solving (12b) for vt and
substituting the result into the Hotelling rule (15) using the form of taxes (48) and
replacing again the capital return r t+1 by its marginal product based on (12a) gives
(45d). At equilibrium, the capital market clearing condition (20) for t = 0, the world
resource constraint (21), and the commodity market equilibrium condition (22) hold di-
rectly. Finally, using the market clearing condition (20) of the capital market individual
transversality conditions can be aggregated based on (45c) to obtain the aggregate ver-
sion in Lemma 4.7

We state the previous result formally in the following theorem.

Theorem 2
Suppose all regions choose uniform climate taxes given by (48). Then, the equilibrium
allocation A∗ = ((K`∗

t , X`∗
t ,C`∗

t )`∈L)t≥0 is efficient, i.e., (47) holds for all t = 0,1,2, . . .

6We remark that this aggregation property of the Euler equation is key for the separability result from
Hillebrand & Hillebrand (2019) on which the present section is based. It requires the form of preferences
(7) and equalization of capital returns via an international capital market.

7For this, one can use the (arbitrary but given) sequence of transfers (T`
t )t≥0 and assume an arbitrary

extraction sequence (X`,s
t )t≥0 consistent with (3) and satisfying

∑
`∈L X`,s

t = ∑
`∈L X`

t for all t. Then, one
can use (17) to recursively obtain the sequence (K`,s

t+1) satisfying the capital market clearing condition
in (20) and the transversality condition limt→∞ K`,s

t+1β
tu′(C`,∗

t )/u′(C`,∗
0 )= limt→∞ K`,s

t+1β
tu′(C∗

t )/u′(C∗
0 )= 0.

Aggregating this condition over all regions using the capital market clearing condition in (20) then gives
the result.
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The distribution (µ`)`∈L of aggregate consumption (Ceff
t )t≥0 depends on whether there

are transfers between regions. If there is no re-distribution, transfers are determined by
(9) and consumption shares follow from equation (24). In a cooperative setup, however,
transfers can be used to incentivize regions to implement the globally rather than the
regionally optimal tax. This issue will be studied next.

5.3 Incentive-compatible transfer policies

Welfare gain under cooperation
Denote the consumption distribution along the non-cooperative equilibrium by (µ`,nc)`∈L
and define aggregate consumption as Cnc

t :=∑
`∈LC`,nc

t . The aggregate allocation Anc =
((K`,nc

t , X`,nc
t )`∈L,Cnc

t )t≥0 associated with the non-cooperative equilibrium satisfies all
the constraints in (44). Therefore, the implied total welfare is less than at the efficient
equilibrium, i.e.,8

Unc :=U((Cnc
t )t≥0)<U((Ceff

t )t≥0)=: Ueff. (49)

We now explore whether this efficiency gain can be distributed such that each regionis
better-off nder efficient taxation relative to the non-cooperative equilibrium.

Pareto-improving consumption shares
To induce a Pareto-improvement under efficient taxation relative to the non-cooperative
equilibrium, each region ` ∈ L must receive a consumption share µ` such that

U((µ`Ceff
t )t≥0)≥U((µ`,ncCnc

t )t≥0). (50)

Exploiting the form of utility (7), we can determine explicit lower bounds µ`crit for this
share such that (50) holds whenever µ` ≥ µ`crit. These shares are characterized in the
following result. The proof can be found in Section A.3 in Appendix A.

Lemma 5
Under efficient taxation of all regions, suppose each region ` ∈ L receives a consumption
share

µ` ≥µ`crit :=
 µ`,nc

(
Unc/Ueff

) 1
1−σ if σ> 0,σ 6= 1

µ`,nc · e−(1−β)(Ueff−Unc) if σ= 1.
(51)

Then, the induced disaggregated efficient allocation A = ((K`,eff
t , X`,eff

t ,µ`Ceff
t ))t≥0 Pareto

improves the non-cooperative allocation Anc = ((K`,nc
t , X`,nc

t ,C`,nc
t ))t≥0.

8The strict inequality can be inferred from Theorems 1 and 2 by observing that taxes along the non-
cooperative equilibrium are determined by (39) rather than by (48). Therefore, Ānc cannot be efficient.
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Noting that µ`crit < µ`,nc for all ` ∈ L, condition (51) holds in particular if µ` = µ`,nc, i.e.,
each region attains the same consumption share as in the non-cooperative equilibrium.

Pareto-improving transfer shares
We now explore how transfers between regions can be designed such that (51) holds.
For this purpose, we assume that regions pool their tax revenue and agree on a trans-
fer policy (θ`)`∈L determining transfer payments as in (10). Let Aeff be the efficient
allocation and define the induced equilibrium prices Peff = (reff

t ,veff
t )t≥0 by setting

reff
t := (1−D`,eff

t )∂K F`
t (K`,eff

t , X`,eff
t ) and veff

t := (1−D`,eff
t )∂X F`

t (K`,eff
t , X`,eff

t ) (52)

for t = 0,1,2, . . . with climate damages D`,eff
t determined by (23). Note that the quan-

tities in (52) are well-defined., i.e., independent of the regional index ` due to (45a)
and (45b) and satisfy the Hotelling rule (15) due to (45d). Denote by (qeff

t )t≥0 the in-
duced Arrow-Debreu prices defined by (13) and let Teff

t :=∑
`∈Lτeff

t X`,eff
t denote total tax

revenue and Π`,eff
t := Y `,eff

t − reff
t K`,eff

t − veff
t X`,eff

t final profits in region ` at time t. As
before, write the induced lifetime profit incomes as Π`,eff := ∑∞

t=0 qeff
t Π

`,eff
t and total tax

revenue Teff := ∑∞
t=0 qeff

t Teff
t . Then, we can use the result from Lemma 1 and condition

(24) to establish the following one-to-one relation between consumption shares (µ`)`∈L
and transfer shares (θ`)`∈L along the efficient equilibrium:

µ` = Π
`,eff + reff

0 K`,s
0 + (veff

0 − cx)R`
0 +θ`Teff

Πeff + reff
0 K s

0 + (veff
0 − cx)R0 +Teff

. (53)

Solving (53) for θ` and combining it with the result from Lemma 5 gives the following
complete characterization of incentive-compatible transfer policies inducing a Pareto-
improvement over the non-cooperative solution.

Theorem 3
Define (µ`,crit)`∈L as in Lemma 5. Suppose each region ` ∈ L chooses efficient taxes
determined by (61) and receives a constant share θ` of global tax revenue satisfying

θ` ≥ θ`crit :=µ`,crit +
µ`,crit

(
Πeff + reff

0 K s
0 + (veff

0 − cx)R0

)
−

(
Π`,eff + reff

0 K`,s
0 + (veff

0 − cx)R`
0

)
Teff

.

Then, all regions are better-off relative to the non-cooperative equilibrium.

Observe that the minimal transfer shares defined in Theorem 3 satisfy

∑
`∈L

θ`crit =
∑
`∈L

µ`,crit −
(∑

`∈Lµ`,crit −1
)(
Πeff + reff

0 K s
0 + (veff

0 − cx)R0

)
Teff

< 1. (54)

Thus, the set of transfer policies (θ`)`∈L satisfying the conditions of Theorem 3 is non-
empty.
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6 Partial Cooperation and Coalitions

6.1 A cooperative setup

The previous sections compared the allocation under full cooperation by all members of
L to the case where there is no cooperation at all and each region solves its own planning
problem (28). Clearly, there are many intermediate scenarios where some regions join
forces and coordinate their climate policies by forming coalitions.

Coalitions and aggregation
To describe a scenario with coalitions formally, let P(L) be the power set of L consisting
of all subsets of L. Any non-empty subset L′ ∈P(L) of L will be referred to as a coalition.
The case L′ = L is called the grand coalition consisting of all regions. Let L′ ∈ P(L) be
an arbitrary coalition. In what follows, we index variables referring to the coalition as
a whole by a superscript L′. For variables referring to individual members, we continue
to use the regional index ` ∈ L′. For example, RL′

0 :=∑
`∈L′ R`

0 is the initial stock of fossil
fuels owned by the coalition L′ while (X`

t )t≥0 denotes fossil fuel consumption in member
region ` ∈ L′. Based on this convention, a coalitional variable xL

′
obtains as the sum of

the list of individual variables (x`)`∈L′ , i.e., xL
′ =∑

`∈L′ x`.

The coalitional planning problem
Suppose the members of coalition L′ join forces by aggregating their resource stocks and
capital endowments. Summing (27) over all regions in L′ one obtains the constraint

∞∑
t=0

qt

( ∑
`∈L′

(
(1−D`

t )F`
t (K`

t , X`
t )− r tK`

t −vtX`
t

)
−CL′

t

)
+ r0KL′,s

0 + (v0 − cx)RL′
0 ≥ 0. (55)

Defining the complement −L′ := L\L′, regional climate damages (23) can be written as

D`
t = 1−exp

(
−γ`

∞∑
n=0

δn

(
XL′

t−n + X−L′
t−n

))
for ` ∈ L′ (56)

Assume that coalition L′ maximizes the total utility attained by the aggregated con-
sumption stream (CL′

t )≥0. This approach is based on the separation principle established
in Hillebrand & Hillebrand (2019) permitting to first determine an efficient solution by
maximizing aggregate utility and then distributing consumption among coalition mem-
bers based on some suitable weighting scheme. The distribution of consumption among
coalition members corresponds to an imputation in the cooperative game defined below.

Based on the previous idea, the coalitional planning problem can be stated as follows:

max
((K`

t ,X`
t )`∈L′ ,CL′

t )t≥0

{
U((CL′

t )t≥0)
∣∣∣ (55), (56) hold, K`

t , X`
t ,CL′

t ≥ 0 for all t = 0,1,2, . . .
}
. (57)

As in the regional problem (28), emission (X−L′
t )t≥0 of all other regions and global prices

P = (r t,vt)t≥0 are taken as given in the decision (57). Further, the coalitional planer
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takes into account the impact of emission of coalition members on damages (56) in each
member region ` ∈ L′.
Solution to the coalitional planning problem
It is again straightforward to solve the coalitional problem (57) using Lagrangean meth-
ods. The proof of the following result parallels the one of Lemma 2 and is omitted.

Lemma 6
Let prices P = (r t,vt)t≥0 and emissions (X−L′

t )t≥0 of non-coalition members be given. If
the allocation ((K`

t , X`
t )`∈L′ ,CL′

t )t≥0 solves conditions (12a) and

(1−D`
t )∂X F`

t (K`
t , X`

t )= vt +
∞∑

n=0
βn (

CL
t+n/CL

t
)−σ

δn
∑
k∈L′

γkY k
t+n (58)

for all ` ∈ L′ with D`
t determined by (56) and the Euler equation

CL′
t+1 = CL′

t (βr t+1)
1
σ (59)

for all t = 0,1,2, . . . and satisfies (55) with equality, then it is a solution to problem (57).

Note that (58) corrects the marginal product of fossil fuel in production by the dis-
counted future climate damages of all coalition members.

6.2 Coalitional equilibrium

Classes of coalitions
Now let L = {L1, . . . ,LN } ⊂P(L) be a partition of the set of all regions L into 1 ≤ N ≤ L
coalitions, i.e., ∪N

n=1Ln = L and Ln∩Lm =; for all n 6= m where n,m ∈ {1, . . . , N}. Following
Yi (1997), we call L a coalition structure. Suppose the members of each coalition L′ ∈L

solve a coalitional planning problem of the form (57). The market maker ` = 0 acts as
in the previous section to enforce market clearing. Consistency of coalitional decisions
leads to the following definition of a coalitional equilibrium.

Definition 3
Let L ⊂P(L) be a coalition structure. A coalitional equilibrium is an allocation

Ā =
((

(K`
t , X`

t )`∈L′ ,CL′
t

)
t≥0

)
L′∈L

(60)

and a price system P = (r t,vt)t≥0 such that the following holds:

(i) For each L′ ∈L , the allocation ((K`
t , X`

t )`∈L′ ,CL′
t )t≥0 solves the coalitional planning

problem (57) given prices P and emissions (X−L′
t )t≥0 of all other regions..

(ii) Prices P chosen by player `= 0 satisfy the Hotelling rule (15) and (v0, r0) and qt

defined by (13) are solutions to the decision problems (30a)-(30c) for all t ≥ 0.
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When we want to emphasize the dependence of coalitional equilibrium on the coali-
tion configuration, we write ĀL and PL . The bar-notation is used to emphasize that
the distribution of consumption within a coalition is not determined and subject to an
imputation to be bargained over by coalition members.

6.3 Decentralization of coalitional equilibrium

Based on the optimality condition (58), it is now straightforward to extend the results
from Theorem 1 to the following theorem describing the climate policy under which the
coalitional allocation is decentralized.

Theorem 4
Let L ⊂P(L) be a coalition structure. For each coalition L′ ∈L , suppose all its mem-
bers ` ∈ L′ set taxes according to the rule

τ`t = τL
′

t :=
∞∑

n=0
βn

(
CL′

t+n

CL′
t

)−σ
δn

∑
k∈L′

γkY k
t+n for all ` ∈ L′. (61)

Then, the coalitional equilibrium is decentralized.

On a balanced growth path where aggregate consumption and output in region of the
coalition grow at constant rate g, the optimal tax formula (61) reduces again to

τ`t = τL
′

t = ∑
k∈L′

γkY k
t

∞∑
n=0

(
β(1+ g)1−σ)n

δn for all ` ∈ L′. (62)

Two special coalition structure are of particular interest. The first one is the coalition
L = {{1}, . . . , {L}} where each region acts individually. In this case, Definition 3 coincides
with that of a non-cooperative equilibrium from Definition 2 and so ĀL ∼= Anc.9

A second scenario is where L = {L} corresponding to the grand coalition consisting of
all regions. For this case, the tax formula (61) coincides with the efficient solution (48).
Therefore, by virtue of Theorem 2 ĀL ∼= Āeff, i.e., the induced allocation is efficient.
We state these two insights as the following and final main result.

Proposition 2
(i) If L = {{1}, . . . , {L}}, then ĀL ∼= Anc.

(ii) If L = {L}, then ĀL ∼= Āeff.

We remark that all results from Section 5.3 on optimal transfer policies designed to
induce cooperation among regions carry over to the case with partial cooperation. In
fact, such polcies can also be derived in closed form based on the same principles as in
the non-cooperative case.

9Due to the slightly different arrangement of terms in ĀL and Anc, we write ĀL ∼= Anc and ĀL ∼= Āeff

below to mean that the two allocations are isomorphic rather than directly identical.
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7 Quantitative results

7.1 Regional structure and coalition scenarios

This section illustrates and quantifies our theoretical results based on calibrated pa-
rameter values chosen to match selected empirical targets. Specifically, we distinguish
the non-cooperative and fully cooperative solution as well as two additional scenarios
with some key regions not joining the global climate agreement.

Regions
Setting L = 10 we distinguish the following region displayed in Table 1. The number
of regions is small enough to allow for a compact presentation of the results and large
enough to distinguish the main players in past climate agreements.

Table 1: Regions in the simulation model

Region Label Index ` Region Label Index `

United States USA 1 India IND 6
OECD Europe OEU 2 Russia RUS 7
Australia & New Zealand ANZ 3 Brazil BRA 8
Other High Income OHI 4 Developing countries DEV 9
China CHN 5 Low Income Countries LIC 10

Time structure
One time period t in our model represents ten years which is a standard choice in the
literature. The initial model period t = 0 represents the years 2010-2019 and is referred
to as the baseline period 2015. Subsequent periods representing years 2020− 2029,
2030−2039, etc. are referred to by their midpoints 2025,2035, etc. Flow variables such
as production output or emissions are generally aggregated over the entire period while
stocks such as capital or atmospheric carbon usually refer to the beginning of the period.

Coalition scenarios
As for the structure of coalitions, we distinguish four scenarios detailed in the following
table. Scenario 1 is the efficient benchmark which is opposed to the completed absence

Table 2: Coalition structures in our simulation

Scenario Description Coalition structure
1 Full non-cooperation L = {{`}|` ∈ L}= {{1}, {2}, . . . , {10}}
2 Full cooperation (grand coalition) L = {L}= {{1, . . . ,10}}
3 Grand coalition except US L = {L\{1}, {1}}
4 Grand coalition except China L = {L\{5}, {5}}
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of cooperation in Scenario 2. Scenarios 3 and 4 correspond to the cases where either
the US or China decide not to cooperate. This allows us to evaluate and quantify the
relative importance of these players for a successful global climate agreement.

7.2 Functional forms and parameters

Production sector
Similar to Hassler, Krusell & Olovsson (2021) we assume that the production function
F`

t :R2+ −→R+ in (1) is of the form

F`
t (K , X )=

[
κ

(
Kα(Q`

N,tN
`
t )1−α

) ε−1
ε + (1−κ)(Q`

X ,tX )
ε−1
ε

] ε
ε−1

, 0< κ< 1,0<α< 1,ε> 0.

(63)

Here, N`
t and Q`

N,t denote population size and labor efficiency in region ` at time t while
Q`

X ,t represents energy efficiency. Parameter ε controls the elasticity of substitution
between fossil energy and the capital-labor aggregate.
Variables Q`

N,t and Q`
X ,t capture labor-augmenting and energy-augmenting technical

change, respectively. They both grow at constant exogenous rates gN ≥ 0 and gX ≥ 0
identical for all regions such that

Q`
N,t = (1+ gN)tQ`

N,0 and Q`
X ,t = (1+ gX )tQ`

X ,0 for t ≥ 0. (64)

The population size (N`
t )t≥0 evolves exogenously and becomes constant for t ≥ 19 corre-

sponding to the year 2200. In our simulations we choose these values consistent with
current population sizes and the UN population forecasts for t = 2100 and t = 2200.
Details can be found below and in Section B.2 in Appendix B.

Resource sector
We abstract from the resource scarcity problem studied in Hassler, Krusell & Olovsson
(2021) by formally setting R0 = ∞. This seems justified because fossil energy in our
model comprises all kinds of fossil fuels including coal which is known to be relatively
abundant. This assumption implies a constant resource price vt = cx.

Climate model
We employ the climate model developed in GHKT which has the advantage of having a
forward-recursive structure. The climate state St in period t consist of permanent (S1,t)
and non-permanent (S2,t) carbon dioxide which evolve as

S1,t = S1,t−1 +φL X t (65a)

S2,t = (1−φ)S2,t−1 + (1−φL)φ0X t. (65b)

Setting δn = φL + (1−φL)φ0(1−φ)n our climate model (5) obtains as a reduced form of
(65) with climate state St := S1,t+S2,t− S̄ where the pre-industrial level is S̄ = 581 GtC.
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7.3 Calibration

Calibration targets
We choose initial productivity parameters Q`

N,0 and Q`
X ,0 in (64) to match regional out-

put and emissions displayed in the following table in our baseline period t = 0. Formal
details on this and how we constructed the data can be found in Sections B.2 and B.3.

Table 3: Calibration targets for baseline period 2010-2019
Variable Units USA OEU ANZ OHI CHN IND RUS BRA DEV LIC

Y `,target
0 Trn. U.S.$ 156.7 188.5 10.6 134.2 134.6 57.1 31.3 28.4 45.8 147.8

X`,target
0 Gt C 52.1 37.0 4.1 37.1 78.8 16.2 15.2 3.9 30.8 18.4

Production parameters
The literature contains a broad range of estimates for the elasticity of substitution ε.
Papageorgiou et al. (2017) argue that this elasticity ’significantly exceeds unity’ and
estimate it to be about 2. Hassler et al. (2021) obtain a much smaller value of about
0.02 in their estimation for the U.S. economy. Our choice of ε= 0.75 is somewhat in the
middle of these estimates. It implies that energy is a gross complement to other inputs.
For ε= 1, 1−κ is the value of fossil energy relative to GDP. Empirical numbers put this
share at about 5%, which is the value we and also Hassler et al. (2021) use, despite the
fact that ε < 1 in our simulations. Alternative specifications as low as κ = 0.8 did not
significantly affect our quantitative results reported below. We also follow Hassler et
al. (2021) by setting α= 0.2632.
Empirically, coal makes up by far the largest share of available stocks of fossil fuels. For
this reason, we set extraction costs to 43 U.S. $ per physical ton of the resource which
is the value of extraction costst per ton of coal used in GHKT. With a carbon content of
0.5441 tons of C per physical ton of coal, this implies extraction costs of about 79$ per
ton of carbon corresponding to the parameter value cx = 0.000043/0.5441= 0.000079.

Consumer sector
Restricting consumer utility as in (7), we choose σ= 1 which gives a logarithmic utility
function. The annual discount rate is 1.5% which implies a discount factor β= 0.98510.
These values are identical to the ones used by GHKT in their benchmark scenario. Our
initial global capital stock is set to K̄0 = 0.2. This value avoids a transitory effect due to
capital adjustments in the initial periods.
The exogenous population sequence (N`

t )t≥0 in region ` is determined based on current
population levels and UN Population forecasts for 2050, 2100, 2150, and 2200. Details
are provided in Section B.3 in Appendix B.
The growth rates of labor efficiency gN and energy efficiency gX are chosen identical
to imply an annual growth rate of 1% which is a conservative estimate. This implies
gN = gX = 0.105= 10.5% per decade.
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Climate parameters
We follow GHKT by setting φL = 0.2, φ0 = 0.393, and φ = 0.0228 in (65). The initial
climate state of permanent (S1,−1) and non-permanent (S2,−1) atmospheric CO2 at the
beginning of t = 0 is chosen consistent with the empirically observed carbon concentra-
tion of S2009 = 827 at the end of year 2009 and S2019 = 878 in 2019 and global emissions
of about 100 Gt C in this decade. This approach is also used in Hillebrand & Hillebrand
(2023) to which we refer for details. The implied initial values consistent with these
observations and (65) are S1,−1 = 807.7 and S2,−1 = 19.3 GtC.
Damage parameters are notoriously hard to measure but tend to be much higher for
poorer countries. Our choices in Table 7.3 are based on Hillebrand & Hillebrand (2023)
adapted to the more disaggregated regional setting employed here.

Table 4: Climate damage parameters.

Region: USA OEU ANZ OHI CHN IND RUS BRA DEV LIC

γ` ·105 4.12 2.05 2.05 2.05 4.12 6.22 6.22 6.22 6.22 8.33

Computation
We use a version of the algorithm developed in Hillebrand & Hillebrand (2023). This
approach identifies the forward-recursive structure of the model and determines initial
consumption C0 based on the shooting-principle. The factor allocation in period t is
determined as a fixed point of a mapping updating regional outputs and the cost shares
of factors in final production. Details can be found in Section B.1 in Appendix B.

7.4 Results

The following figures depict the evolution of selected variables for the four scenarios
described above.

Regional emission taxes
Figure 1 illustrates the evolution of regional emissions taxed for each scenario. The tax
values for period t = 1 corresponding to the year 2020 are reported in Table 5 below.

Table 5: Climate taxes in 2020 under full, partial, and non-cooperation in $/t CO2.

Scenario USA OEU AUS OHI CHN IND RUS BRA DEV LIC

1 6.88 3.86 0.22 2.86 5.54 3.68 1.77 1.81 3.18 13.48
2 43.11 43.11 43.11 43.11 43.11 43.11 43.11 43.11 43.11 43.07
3 6.90 36.27 36.27 36.27 36.27 36.27 36.27 36.27 36.27 36.27
4 37.63 37.63 37.63 37.63 5.55 37.63 37.63 37.63 37.63 37.63
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Figure 1: Regional climate taxes.

In all cases, taxes increase over time due to GDP growth. As one would expect from our
tax formulae (39), (48), and (61), non-cooperation leads to taxation much lower com-
pared to all other scenarios. For this reason, the non-cooperative solution represents
a lower bound of tax policies in any cooperative scenario. For instance, under non-
cooperation, climate taxes in 2020 are less than 10 $/t CO2 for all regions except low
income countries and range from 0.22 $/t CO2 in Australia/New Zealand to 6.89 $/t CO2

in the U.S. Low income countries set a slightly higher carbon tax equal to 13.48 $/t CO2

in 2020 reflecting higher climate damages in this region internalized by the tax.

Under full cooperation, regions agree to introduce a global carbon tax of 43.07$/ t CO2

in 2020. This value is in line with the 34$ reported in GHKT and also in Hillebrand
& Hillebrand (2019) for the year 2010.10 Our value is slightly higher than the optimal
tax (corresponding to the social cost of carbon) obtained from the DICE model which
amounts to 36.7 $/t CO2 in t = 2020.11 The optimal tax increases again over time re-

10The increase is mainly due to GDP growth from 2010 to 2020 and also because we measure GDP in
PPP-terms which increases measured GDP notably in less developed countries.

11The value is directly taken from the latest spreadsheet version of DICE available online at
http://www.econ.yale.edu/∼nordhaus/homepage/homepage/DICE2016R-090916ap-v2.xlsm.
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flecting the growth trend of GDP in each region to reach a value of 107 $/t CO2 in 2100
and of 169 $/t CO2 in 2150.

In Scenario 3 where all regions except the U.S. form a coalition, the coalitional tax is
36.23 $/t CO2 while the U.S. imposes a much lower tax of merely 6.91 $/t CO2. A sym-
metric picture emerges for Scenario 4 where instead China breaks away from the grand
coalition imposing a domestic tax of 5.57 $/t CO2 while the coalition sets a much higher
tax of 37.59 $/t CO2. In both cases, however, the coalitional tax is lower than for the
grand coalition because damages in the deviating country are no longer internalized.

Regional emissions
It is clear that any successful climate policy must induce drastic reductions of energy
related CO2-emissions. Figure 2 shows how regional and global emissions evolve over
time under all four political scenarios.
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Figure 2: Regional emissions.

Introducing the optimal global tax in Scenario 2 leads to a substantial and permanent
reduction in emissions. At the global level, emissions in 2020 decline by about 49%
relative to Scenario 1 with non-cooperation. In absolute terms, this corresponds to
a reduction of more than 42 GtC. This immediate reduction in absolute and relative
terms is a little less pronounced but still significant for the two Scenarios 3 and 4 with

29



partial cooperation: A global coalition without the U.S. reduces global CO2 emissions by
37% corresponding to 31.8 Gt C, a coalition without China by 29.0 Gt C corresponding
to a decline of 32%.

At the regional level, there are again sizable differences depending on the degree of
fossil fuel dependence and political scenario. Under full cooperation, the most drastic
reduction occurs in China where emissions decline by -10.9 GtC (-48.8%) relative to
non-cooperation, followed by the U.S. where the decline is -7.3 GtC (-46.4%).

For all three cooperative scenarios, initial reductions are essentially preserved over
the entire time window where emissions within the corresponding coalition rise only
slightly. This is in stark contrast to the non-cooperative scenario 1 and for the region
not part of the world coalition in Scenarios 3 and 4 where emissions continue to grow
without bounds due to the exponential increase in fossil fuel consumption. As a con-
sequence, the deviating country acquires an every increasing share of global emissions
and becomes the main offender in both Scenarios 3 and 4.

Climate and temperature
The main variable representing global warming and the success of climate policies is
the change in global temperature determined by the so-called Arrhenius relation:

TEMPt = 3log(St/581)/ log2. (66)

Figure 3 shows the change in global temperature relative to the baseline period (right)
for our four political scenarios. An important benchmark is the 2°-target set by the
2015 Paris Agreement (cf. UNFCCC (2015)) which limits the increase in global tem-
perature to less than two degrees until 2100 relative to the pre-industrial level. Data
from NASA (2018) shows that global temperature in 2015 already exceeded the pre-
industrial level by 0.9 °C. For this reason, the two-degree target represented by the
dashed line in Figure 3 corresponds to an increases of 1.1 °C relative to 2015.
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Figure 3: Atmospheric carbon concentration and global temperature.
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The main insight here is that under full cooperation global temperature increases by
1.014 °C until 2100 which is therefore in line with the two-degree target. By contrast,
the two-degree target is exceeded as early as 2070 under non-cooperation and exactly in
2100 under both political scenarios of partial cooperation and increases exponentially
thereafter.

8 Conclusions

The present paper provides closed-form solutions of optimal climate polices under dif-
ferent scenarios of cooperation between regions. These results provide the basis for
understanding the quantitative effects of climate policy for a given coalition structure.
They also hold the key for designing the redistribution scheme discussed in this paper
under which all countries have an incentive to cooperate and participate in a global
climate agreement to implement the efficient level of taxation.
One goal of future research is to better understand the formation process of coalitions
and their stability. A recent study of this type can be found in Vosooghi, Arvaniti &
van der Ploeg (2022) who determine the equilibrium coalition structure endogenously.
However, their setup does not allow for trade between countries on international mar-
kets. Thus, it would be interesting to extend their results to a setting with regional
trade assumed in our paper.
A second line of research would be to make technological change endogenous and di-
rected as do Acemoglu et al.(2012) and Hassler et al. (2021). Understanding the impact
of regional technological change and its spill-over to other regions as well as the scope
for direct technology transfers across regions is likely to be a key factor in solving the
climate problem. Such an innovation policy could complement the incentives set by tax
policies studied in this paper.

A Mathematical results and proofs

A.1 Proof of Lemma 2

The boundary behavior (2) of each F`
t and utility function (7) ensure that any solution

to (28) satisfies K`
t > 0, X`

t > 0, and C`
t > 0. Thus, we can dispense with non-negativity

constraints and use (27) as the single constraint. Define the Lagrangean function

L
(
(K`

t , X`
t ,C`

t )t≥0,λ
)

:=
∞∑

t=0
βtu(C`

t )+λ
( ∞∑

t=0
qt

(
e−γ

`∑∞
n=0δn(X`

t−n+X−`
t−n)F`

t (K`
t , X`

t )

−r tK`
t −vtX`

t −C`
t

)
+ r0K`,s

0 + (v0 − cx)R`
0

)
.
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For each t = 0,1,2, . . . the derivatives with respect to consumption and capital read:

∂L
(
(K`

t , X`
t ,C`

t )t≥0,λ
)

∂C`
t

=βtu′(C`
t )−λqt

!= 0 (67a)

∂L
(
(K`

t , X`
t ,C`

t )t≥0,λ
)

∂K`
t

=λqt

(
e−γ

`∑∞
n=0δn(X`

t−n+X−`
t−n)∂K F`

t (K`
t , X`

t )− r t

)
!= 0 (67b)

Solving (67a) gives λ=βtu′(C`
t )/qt for all t which implies the Euler equation (19). More-

over, λ> 0 implies that (27) holds with equality by virtue of the Kuhn-Tucker theorem.
Equation (67b) implies (12a). Finally, the partial derivative with respect to fossil fuels
read:

∂L
(
(K`

t , X`
t ,C`

t )t≥0,λ
)

∂X`
t

=λqt

(
(1−D`

t )∂X F`
t (K`

t , X`
t )−vt −

∞∑
n=0

qt+n

qt
γ`δnY `

t+n

)
!= 0 (68)

with D`
t defined as in (23) and Y `

t as in (1). Rearranging (68) using that by virtue of
(13) and (19) qt+n/qt =βn(Ct+n/Ct)−σ implies (29). ■

A.2 Proof of Lemma 4

To derive the optimality conditions (45) we adopt a standard Lagrangean approach.
The boundary behavior (2) of each F`

t and of the utility function (7) ensures that any
solution to (44) satisfies K`

t > 0, X`
t > 0, and Ct > 0 for all t and `. Thus, we can dispense

with non-negativity constraints. Define the Lagrangean function

L
(
((K`

t , X`
t )`∈L,Ct)t≥0, (λt)t≥0,µX ,µK

)
:=

∞∑
t=0

βtu(Ct)+µX

(
R0 −

∞∑
t=0

∑
`∈L

X`
t

)

+
∞∑

t=0
λt

(∑
`∈L

e−γ
`∑∞

n=0δn
∑

k∈L X k
t−n F`

t (K`
t , X`

t )−Ct −
∑
`∈L

K`
t+1 − cx

∑
`∈L

X`
t

)
+µK

∑
`∈L

(
K`,s

0 −K`
0

)
.

For each t = 0,1,2, . . . and ` ∈ L the first order conditions read :

∂L (−)

∂Ct
=βtu′(Ct)−λt

!= 0 for all t = 0,1,2, . . . (69a)

∂L (−)
∂K`

0

=λ0(1−D`
0)∂K F`

0 (K`
0 , X`

0)−µK
!= 0 for all ` ∈ L (69b)

∂L (−)
∂K`

t
=λt(1−D`

t )∂K F`
t (K`

t , X`
t )−λt−1

!= 0 for all ` ∈ L and t = 1,2,3, . . . (69c)

∂L (−)
∂X`

t
=−µX +λt

(
(1−D`

t )∂X F`
t (K`

t , X`
t )− cx

)
−

∞∑
n=0

λt+nδn
∑
k∈L

γkY k
t+n

!= 0 for all ` ∈ L and t = 0,1,2, . . . (69d)
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Solving (69a) gives

λt =βtu′(Ct)=βtC−σ
t for all t = 0,1,2, . . . (70)

Using (70) in (69c) gives the Euler equation (45c). Since the term βC−σ
t+1/C−σ

t in (45c) is
independent of `, this equation and (69b) imply (45a). Furthermore, solving (69d) using
(70) and defining τ̂t as in (46) gives

µX =λt

(
(1−D`

t )∂X F`
t (K`

t , X`
t )− cx − τ̂t

)
for all ` ∈ L and t = 0,1,2, . . . (71)

Since the l.h.s. in (71) and the term τ̂t are both independent of the regional index `, this
implies (45b). Further, since the l.h.s. in (71) is also independent of time, combining it
with (70) gives (45d). Equations (69b) and (70) imply µK > 0 and λt > 0 such that (42)
and (43) hold with equality by means of the Kuhn-Tucker theorem. The transversality
condition ensures that consumption does not implode.
Remark: The term x̂t :=µX /λt plays the role of a scarcity rent which by (71) evolves as

x̂t+1 =µX /λt+1 = λt

λt+1
x̂t =

C−σ
t

βC−σ
t+1

x̂t for all t = 0,1,2, . . . (72)

This corresponds to the variable vt− cx along the decentralized equilibrium. The initial
value x̂0 = µX /λ0 ensures that either

∑∞
t=0

∑
`∈L X`

t = R0 or
∑∞

t=0
∑
`∈L X`

t < R0 in which
case µX = 0 by the Kuhn-Tucker Theorem and x̂0 = 0. In the latter case, by (71)

(1−D`
t )∂X F`

t (K`
t , X`

t )= cx + τ̂t for all ` ∈ L and t = 0,1,2, . . . (73)

This corresponds to the case vt = cx along the decentralized solution. ■

A.3 Proof of Lemma 5

The argument depends on parameter σ in (7). We distinguish the following cases.
First, assume that σ 6= 1 in (7). Then, U is homogenous of degree 1−σ> 0 permitting to
write the utilities in (50) as

U((µ`Ceff
t )t≥0)= (µ`)1−σUeff and U((µ`,ncCnc

t )t≥0)= (µ`,nc)1−σUnc. (74)

Suppose σ < 1. Then, U is positive-valued and solving (74) for µ` using Ueff > 0 gives
the following condition for the consumption share of region `:

µ` ≥µ`crit :=µ`,nc
(
Unc/Ueff

) 1
1−σ . (75)

Since 0<Unc/Ueff < 1 and σ< 1, we have µ`crit <µ`,nc as claimed.
Suppose σ> 1. Then, U is negative-valued and solving (74) for µ` yields again the same
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condition (75). Since now Unc/Ueff > 1 , σ> 1 implies µ`crit <µ`,nc again.
As a second case, assume that σ= 1 implying logarithmic period utility in (7). Then,

U((µ`Ceff
t )t≥0)= log(µ`)

1−β +Ueff and U((µ`,ncCnc
t )t≥0)= log(µ`,nc)

1−β +Unc. (76)

Using this result in (74) and solving again for µ` gives

µ` ≥µ`crit :=µ`,nc · e−(1−β)(Ueff−Unc). (77)

Again, Ueff >Unc implies that µ`crit <µ`,nc also in this case. ■

B Details on the simulations

In this section we report additional details on our computation and calibration strategy.

B.1 Computational details

Equilibrium conditions for period t
Consider an arbitrary period t ≥ 0. Let aggregate capital supply K s

t , exogenous popula-
tion and productivity variables (N`

t ,Q`
K ,t,Q

`
X ,t)`∈L, and the climate state (S1,t−1,S2,t−1)

from the previous period be given. Based on the approximation formula (62), suppose
taxes in region ` ∈ L are determined by

τ`t =
∑

k∈L`
γkY k

t

∞∑
n=0

βnδn (78)

where L` ⊂ L is the coalition that region ` as a member of.12 Using the CES-form of
production (63) and defining the cost shares

η`K ,t :=
κ

(
(K`

t )α(Q`
N,tN

`
t )1−α

) ε−1
ε

(
F`

t (K`
t , X`

t )
) ε−1

ε

and η`X ,t :=
(1−κ)(Q`

X ,tX
`
t )

ε−1
ε(

F`
t (K`

t , X`
t )

) ε−1
ε

= 1−η`K ,t (79)

one can write final sector’s optimality conditions (12) as

r t =αη`K ,tY
`
t /K`

t and cx +
∑

k∈L`
γkY k

t

∞∑
n=0

βnδn = η`X ,tY
`
t /X`

t , ` ∈ L. (80)

12In particular, L` = {`} in the non-cooperative and L` = L in the fully cooperative case. In our sim-
ulations, we compared the approximated value (78) ex-post to the true solution (61) to show that the
approximation is excellent.
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Moreover, using (65) and (4) in (6) permits to write final output in region ` as

Y `
t = exp

(
−γ`

(
S1,t−1 + (1−φ)S2,t−1 + (φL + (1−φL)φ0)

∑
k∈L

X k
t − S̄

))
F`

t (K`
t , X`

t ). (81)

The temporary equilibrium problem is to determine the factor allocation (K`
t , X`

t )`∈L
consistent with optimal producer behavior (80) and the market clearing condition∑

`∈L
K`

t = K s
t (82)

with outputs (Y `
t )`∈L determined by (81) and cost shares as in (79). Rearranging the

first condition in (80) and summing over all regions using (82) gives

r t =α
∑
`∈L

η`K ,tY
`
t
/

K s
t . (83)

Using (83) in (80) and re-arranging both conditions, exploiting that η`X ,t = 1−η`K ,t gives

K`
t =

η`K ,tY
`
t∑

h∈Lηh
K ,tY

h
t
·K s

t and X`
t =

(1−η`K ,t)Y
`
t

cx +∑
k∈L` γkY k

t
∑∞

n=0β
nδn

. (84)

Next we show how the temporary equilibrium problem can be computed numerically.

Computing the factor allocation in period t.
Let arbitrary values Ĥ := (Ŷ `

t , η̂`K ,t)`∈L ∈ H := (R++× [0,1[)L be given. Using Ĥ in (84)
determines the implied factor allocation Ĝ := (K̂`

t , X̂`
t )`∈L ∈ G := R2L++. This step defines

a first mapping ΦG :H→ G, Ĥ 7→ΦG(Ĥ) := Ĝ. Substituting the values Ĝ back into (79)
and (81) yields the updated values H̃ := (Ỹ `

t , η̃`K ,t)`∈L ∈ H defining a second mapping
ΦH : G→H, Ĝ 7→ΦH(Ĝ) := H̃. The composition Φ :=ΦH ◦ΦG :H→H, Ĥ 7→Φ(Ĥ) := H̃ is
a self-map on H and the equilibrium solution H := (Y `

t ,η`K ,t)`∈L is a fixed point of Φ. It
turned out thatΦ is globally asymptotically stable such that simply iteratingΦ forward,
starting with an arbitrary guess H0 yields the equilibrium solution limn→∞Φn(H0) =
H = (Y `

t ,η`K ,t)`∈L. The implied factor allocation then obtains as G = (K`
t , X`

t )`∈L =ΦG(H).

Equilibrium state dynamics
The endogenous state variable in period t is ξt = (K s

t+1,Ct,S1,t,S2,t). To uncover the
forward-recursive structure of equilibrium, let the previous state ξt−1 in period t be
given. Using K s

t and (S1,t−1,S2,t−1) along with the exogenous variables (N`
t ,Q`

K ,t,Q
`
X ,t)`∈L

we can determined the factor allocation (K`
t , X`

t )`∈L and regional outputs (Y `
t )`∈L and the

auxiliary variables (η`K ,t,η
`
X ,t)`∈L as described in the previous step. Using the implied

aggregate emissions X t :=∑
`∈L X`

t in (65) determines the new climate state (S1,t,S2,t).
Computing the implied capital return r t as in (83), current aggregate consumption fol-
lows from the Euler equation Ct =βr tCt−1. Aggregate capital supply K s

t+1 then follows
from the resource constraint (22), completing the determination of ξt.
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Given initial world capital K s
0 and the climate state (S1,−1,S2,−1), we determine initial

aggregate consumption C−1 (or, equivalently, C0 = (βr0)1/σC−1) such that the transver-
sality condition limt→∞βtK s

t+1/Ct = 0 holds, i.e., consumption neither explodes nor im-
plodes. It turned out that there is always a unique value C0 for which this is the case.

B.2 Calibration details

Determining productivity parameters
Let the initial climate state (S1,−1,S2,−1) and initial capital supply K s

0 in t = 0 be given.
For each region ` ∈ L, set output and emissions to the target levels defined in Table 3,
i.e, Y `

0 = Y `,target
0 and X`

0 = X`,target
0 . Consider the non-cooperative scenario where each

region sets taxes based on the approximation (41). Then, initial regional taxes compute
as τ`0 = γ`Y `

0
∑∞

n=0β
nδn. Using this result and the given values of regional output Y `

0
and emissions X`

0 one can explicitly solve the second condition in (84) to obtain the
values η`X ,0 = 1−η`K ,0 for all ` ∈ L. This also determines η`K ,0 for each `, which can be
used in (84) together with the given output levels (Y `

0 )`∈L to infer the initial capital
allocation (K`

0)`∈L. Further, one obtains from (81) the values F`
0 (K`

0 , X`
0) as

F`
0 (K`

0 , X`
0)=Y `

0 ·exp

(
γ`

(
S1,−1 + (1−φ)S2,−1 + (φL + (1−φL)φ0)

∑
k∈L

X k
0 − S̄

))
. (85)

Using the values η`X ,0, X`
0 , and F`

0 (K`
0 , X`

0) one can solve the second condition in (79)
explicitly for Q`

X ,0. Analogously, one can use η`K ,0, K`
0 , F`

0 (K`
0 , X`

0) and the given value
N`

0 to solve the first condition in (79) explicitly for Q`
N,0.

B.3 Data

Regional GDP and emissions
We use annual regional PPP-adjusted GDP data expressed in current international $
from the World Bank (2020). Data on regional emissions were obtained from the IEA
Energy Balances (2021) expressed in Gt of CO2 and converted to GtC using a conversion
factor of 12/44. All values are aggregated over different countries based on our regional
distinction and years 2010-2019. .

Population data
We used current population sizes and predictions from the ’Population Projection 2300’
provided by the United Nations (2004) displayed in Table 6. Population sizes for 2010-
2019 are averaged to obtain the value used in t = 0. To obtain population forecasts for
each period t = 1, . . . ,19 we linearly interpolate between forecasts for 2050, 2100, 2150,
and 2200 from Table 6. After t = 19 corresponding to the year 2200, the population in
all regions is assumed to be constant.
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Table 6: Regional population for baseline period 2010-2019 and in future periods
Variable Description USA OEU ANZ OHI CHN IND RUS BRA DEV LIC

N`
0 Pop. 2015 [mio.] 319.33 558.20 28.28 277.45 1374.64 1301.92 143.82 203.53 2518.25 578.43

N`
4 Pop. 2050 [mio.] 408.70 583.74 30.07 330.84 1395.18 1531.44 101.46 33.14 3474.70 863.53

N`
9 Pop. 2100 [mio.] 437.16 477.91 28.83 301.89 1181.50 1458.36 79.54 212.45 3919.31 951.91

N`
14 Pop. 2150 [mio.] 452.75 480.79 29.21 292.52 1149.12 1308.19 83.08 202.21 3580.55 860.90

N`
19 Pop. 2200 [mio.] 470.05 499.47 30.36 298.26 1200.73 1304.53 86.74 208.83 3537.94 848.62
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