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Abstract. This paper develops a parsimonious model of individual exposure and
of public health policy that can be used to study the evolution of an epidemic and
the optimal use of lockdown policies and other non-pharmaceutical interventions.
At the heart of individual exposure choices are the trade-offs between private utility
derived from exposure and the risks of infection. Agents’ utilities from private ex-
posure are amplified by network benefits from social and economic activities, which
amplifies the infection externality and constitutes a role for coordination policies
due to multiple equilibria. We find that lockdowns do not prevail endogenously in
equilibrium and that containment policy can significantly enhance welfare. Unpop-
ularity of such contact restrictions imply that policy might face time inconsistency
problems.
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1 Introduction
When COVID-19 started spreading outside of China in the end of March 2020, countries
around the world decided to react differently to the spreading of the virus. While some
countries, such as South Korea, Taiwan, Germany, and many more behaved very carefully
on impact other countries adopted a more or less laissez-faire policy. Sweden even became
famous for its unique "Swedish way", choosing to let the pandemic surge, only protect-
ing vulnerable groups. Meanwhile in the US, president Trump also decided to take no
measures when the first wave sweeped across the country. Outcomes in terms of infection
numbers per capita and, more regrettably, the overall death counts differed as much as
the strictness of the imposed measures. There is an ongoing discussion about the optimal
approach to containment policy. The common SIR model has generally no explicit role
for policy and assumes that infection peaks are reached when satiation occurs. Thus an
epidemic ends when the susceptible part of the population (which is considered exoge-
nous) has undercut a certain threshold by getting infected, immunized or, alas, killed by
the disease. This is a very unsatisfying implication of a model given the fact that many
diseases, such as COVID-19, last for cycles without “burning through their own fuel” and
return more infectious or become endemic. We thus develop a model that has a non-
trivial role for human behavior and thus containment policy in order to study optimal
containmnent policy.
Our model follows Toxvaerd (2020), Jones et al. (2020) and (Eichenbaum et al. 2020)
in that it models endogenous exposure choices of individual. Our focus in the present
paper lies on two aspects of individual behavior and the public response to an epidemic:
firstly, we put emphasis on the complementarity of individual and public exposures in
social and economic activity. Secondly, we stress that containment measures are subject
to feasibility constraints: taxing individuals in a Pigouvian way to address the infection
externality will generally not be possible.
We are interested in differences in the welfare implications of length, strictness and the
threshold infection rate characterizing an optimal lockdown regime under a parsimonious
set of assumptions. Our results imply that non-linearities in all of these characteristics
exist.
In our model, the susceptible group of individuals chooses to expose themselves endoge-
nously, facing trade-offs between the social or economic benefit from exposure on the one
hand and the risk of infection on the other hand. In this sense our paper is closely related
to Jones et al. (2020), Toxvaerd (2020) and Collard et al. (2020). We introduce network
effects into our model by modeling agents’ utility from exposure as a function of aggre-
gate exposure. Thus individuals exposure decisions affect other agents’ utility not only
through their effect on future infection rates, but also by affecting their current period
utility. Empirical evidence for the relevance of these network effects has been provided
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by Chang and Velasco (2020).
Our use of dynamic programming tools is closest in spirit to Eichenbaum et al. (2020). In
contrast to Collard et al. (2020), Toxvaerd (2020), agents’ behavior in Eichenbaum et al.
(2020) is based on explicit consumption and working decisions, whereas our paper ab-
stracts from the particular activities that are associated with varying degrees of exposure.
Moreover, we do not use a macroeconomic framework but highlight the game-theoretic
interaction between susceptible agents when deciding on private exposures.
Our main findings are that network effects and endogenous exposure can lead to multi-
ple equlibria. The indeterminacy of these equilibria constitutes a coordinating rule for
policy makers since individuals will generally not coordinate themselves in the presence
of externalities. The numerical approach in the present paper allows us to incorporate
various state-contingencies in policies and to calculate consistent equilibrium sequences
over a large number of periods. The private decisions of agents are highly tractable but
closed form solutions will generally not be available so that we develop an algorithm that
solves for consistent expectations and equilibrium sequences.
The paper proceeds as follows: In the next section we first introduce the SIR-model as
it can be found in Jones et al. (2020). We present a behavioral model using an interac-
tive equilibrium model in which susceptible individuals maximize their utility given the
state of the pandemic as well as the behavior of other individuals, giving rise to multiple
equilibria. Further, we dissect the optimal behavior of our models’ subgroups. Section 3
sets the stage for our numerical analysis by presenting the calibration of the full model.
Section 4 presents the simulation results. The behavioral model allows us to conduct
ordinal welfare-comparisons of these equilibrium sequences, thus allowing us to compare
the welfare implications of different policy scenarios. Section 5 concludes.

2 A SIR-model with Endogenous Exposure
In accordance with the available data and the goal of this paper, we consider a discrete-
time variant of the SIR model with the following deviations from the well-known default by
Kermack and McKendrick (1927): in decreasing importance, the model explicitly accounts
for (i) an endogenously determined number of exposed individuals Et; (ii) behavioral
patterns for subgroup’s exposure consistent with the fact that infected agents differ along
the lines of their health state: infected agents consider themselves susceptible until they
contract the disease, which is when they reveal their type (iii) an exogenous immunization
rate νt due to vaccination and testing/quarantining; (iv) demised agentsDt are withdrawn
from interaction, while recovered agents are not. This denomination of aggregate exposure
Et implies more realistic contact rates
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2.1 Epidemiological structure

The standard SIR model is implied by a pooling equilibrium where susceptible agents
cannot distinguish infected agents from other susceptible agents, since they behave ob-
servationally equivalently.1 The dynamics are primarily determined by the pools of sus-
ceptibles St and infected It but removed agents Rt and demised agents Dt matter to
denominate interaction of exposed and infected individuals by Nt = St + It + Rt which
falls short of total population Pt = 1 by Dt.2

We work with the following epidemiological system

Nt = St + It +Rt (1)

St+1 = (1− νt)St − ψtεt
ItSt
Nt

(2)

It+1 = (1− δt − ρt)It + ψtεt
ItSt
Nt

(3)

Rt+1 = Rt + ρtIt + νtSt (4)

Dt+1 = Dt + δtIt (5)

where we let infection rate at contact ψt, case-fatality-rate (CFR) δt, vaccination rate νt
and the recovery rate ρt be potentially time-dependent or state-dependent processes. We
endogenize the transmission of the disease by providing a behavioral aggregator-model of
exposure εt which scales the population moments St and It.
The infection rate (i.e. the number of expected new infections normalized by the number
of susceptible agents) is thus given by

φt = ψtε
S
t ε

I
t ιt (6)

where ιt ≡ It

Nt
can be understood as the adjusted prevalence, which we will simply refer

to as incidence. The reproduction number Rt ≡ It+1
It

implied by the model is

Rt = 1− δt − ρt + ψtεtσt (7)

where σt = St/Nt.

2.2 Aggregation of exposure

We treat aggregate exposure εt as a blackbox of economic and social activity. To reduce
complexity, we assume that there exists an aggregator F that maps the exposure of

1A separation equilibrium does not produce infections and thus extinguishes the virus in few periods.
2Total population is normalized to unity w.l.o.g. so that the variables St, It, Rt and Dt can be under-
stood as population shares.

4



the sub-populations St, It, Rt collected in Et = {εSt , εIt , εRt } into the interval E .3 This
aggregator is parametrized by the population moments Pt = {St, It, Rt, Dt}. In short, we
require

εt = F (Et;Pt) (8)

where F has the following properties:

Assumption 1 Monotonicity: F is increasing in each sub-group’s exposure

∂PF (E;Pt) ≥ 0. (9)

where ∂PF denotes the partial derivative of F with respect to the exposure of subgroup
P = S, I, R for given population moments Pt.
Our second assumption on F is that subgroup’s exposures are complementary to infected
agents’ exposure in bringing about aggregate exposure:

Assumption 2 Superspreading:

∂2F

∂εI∂εP
> 0,P = S, I, R (10)

Lastly, we assume

Assumption 3 Boundedness: Let Ē = {ε̄, ε̄, ε̄} and E = {ε, ε, ε}. Then

F (Ē;Pt) ≤ ε̄2, F (E;Pt) ≥ ε2, (11)

Consistent with assumptions (A1-A3) and with full control of infection probabilities by
the subgroups’ exposures as well as the epidemiological model above, we will employ the
most simple product-aggregator:4

F (Et;Pt) = εSt · εIt (13)

Note that this aggregator has the intuitive property that total new infections are deter-
mined by the sub-groups exposures multiplied by their respective expsosures:

εIt It · StεSt
Nt

(14)

3The subgroups’ exposures are assumed to be bounded by the interval EP = [ε, ε̄].
4We also ran experiments with the aggregator

F (Et;Pt) = εI
t · [ιtεI

t + σtε
S
t + (1− ιt − σt)εR

t ] (12)

as well as the Cobb-Douglas or CES-type aggregator, with vastly equivalent qualitative and similar
quantitative results.
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Taken together, the epidemiological structure so far defines an operator H, i.e. a law of
motion that takes the state of the epidemic at time t and exposures Et and spits out a
new state of the pandemic,

Pt+1 = H(Et,Pt) (15)

The exposure model below takes this law of motion and produces consistent choices of
exposures Et.

2.3 Heterogeneity and Expectations

For the main part of our analysis, we assume that individuals consider the SIR-model’s
coefficients Πt = {νt, ψt, δt, ρt} as representative for their private parameter counterparts
πj,t = {νj,t, ψj,t, δj,t, ρj,t}. Moreover, we assume that that the direct period-utility loss in
case of sickness, κj,t, is expected to be given by κt.5

Nevertheless, susceptible agents understand that they can scale their private probability of
infection φj,t and that the parameters exogenous to their own behavior can be contingent
on the aggregate state of the epidemic. Hence, we allow individual parameters in Πt to
be determined by time-invariant functional forms that only depend on the population
aggregates Pt = {St, It, Rt, Dt}.6 Hence we suppress agent-specific characteristics in κj,t,
and πj,t by assuming that personal expectations about these coefficients coincide across
agents. We keep the agents-index j to distinguish personal and aggregate exposures as
well as personal perception of coefficients φj,t from the respective counterparts on the
aggregate.
Summing up, we maintain the assumption that individuals’ estimates of population shares
and the relevant coefficients of the epidemiological model are accurate but assume that
agents mistake the population rates νt, ψt, ρt and δt as representative for their private
rates νj,t, ψj,t, ρj,t and δj,t.

2.4 State-contingencies

The probability of fatality δt is directly matched with the CFR in the data and thus we
use functional forms

δj,t := δ(It). (16)

These functional forms reflect that case-fatality rates are sensitive to bottlenecks in the
health sector, which is captured by the number of infected agents.

5The misperceptions and behavioral biases in individuals’ estimates are a promising avenue for future
extensions but are not the focus of the present analysis.

6The model can be extended easily to take into account demographic and geographic features of the
population as long as they preserve the upper-triangular structure of the system of the continuation
values. Hence it is possible to use known distributions of age and other relevant characteristics to
trace out individual parameter values.
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In our baseline model, the transmission coefficient ψt will be held constant but the solution
method allows us to introduce seasonality (or pharmaceutical protection mechanisms)
into the model by varying ψt. In our extensions below, we study the following form of
seasonality:

ψt = ψ
[
1 + α sin

(
t

ω
· π2

)]
(17)

where ψ is the benchmark estimate employed in the epidemiological literature, α scales
volatility over the course of a yearly cycle and χ is the number of periods in a year.
Our focus in the present analysis are non-pharmaceutical interventions and the behavioral
response to contact restrictions in the absence of treatments and vaccines. Thus we do
not model vaccinations extensively, but we let the immunization rate νt end the pandemic
after a certain number of periods in all our simulations. It is straightforward to relax
this assumption and to introduce more state-contingency (e.g. endogenous development
of vaccines) to embody additional motives of precautionary behavior.

2.5 Non-pharmaceutical policies

The equilibrium will not be Pareto-optimal since agents do not take into account the
(positive and negative) effects of their exposure choices on other agents’ risk of infection
and utility from activity. Since Pigouvian policies (e.g. a tax on exposure that reflects the
social costs and benefits of exposure) that attain the first-best solution will generally not
be available, we do not study such policies. Instead, we look at contact restrictions that
curtain maximum exposure of agents by imposing upper bounds of individuals’ exposures.
In the absence of contact restrictions EPt = Et = [ε, ε̄], P = S, I, R. We study non-
pharmaceutical interventions that are characterized by sequences of contact restrictions
{τt} so that max Et = τt is imposed ∀t. Moreover, policy cannot respond to Et directly
but controls maximum individual exposure directly and contingent only on the state of
the epidemic Pt. Hence, policies follow rules τt = τ(Pt). We explore two such rules in our
simulations.
Let τL ≥ ε be the strictness of contact restrictions in lockdown and ῑ a threshold incidence.
We consider the following regimes:

1. Lockdowns: if the share of infected individuals breaches the threshold ῑ, individuals
are restricted to exposure τL for n periods.7 Formally,

{τk}t≤k≤t+n = τL ⇔ ιt > ῑ, (18)

and
τt = ε̄ ⇔ ιt ≤ ῑ. (19)

7Note that the lockdown-rule renews contact restrictions automatically if incidence ιt does not decline
while the lockdown is in action.
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2. Gradual contact restrictions: exposure choices are restricted according to the current
prevalence of the disease. Formally,

τt = ζtε+ (1− ζt)ε̄ (20)

where
ζt = min{ιt/ῑ, 1} (21)

In addition, each regime prescribes quarantining for infected agents, which (imperfectly)
truncates the choice set of infected agents to EIt = {ε, ε̄It}, ε̄It = qε+ (1− q)τt and where
q ∈ [0, 1] capture the effectiveness q of quarantining rules and containment strategies.

2.6 Preferences

We model agents’ exposure choices by considering the dynamic optimization schemes of
susceptible, infected and removed agents which are living inside their respective continu-
ums of size St, It and Rt.
The recursive system of continuation values is thus given by

V S
j,t = v(εSj,t, εt) + β{νtV R

j,t+1 + (1− νt)[(1− φj,t)V S
j,t+1 + φj,tV

I
j,t+1]}, (22)

V I
j,t = v(εIj,t, εt) + β(1− δt)[(1− ρ)V I

j,t+1 + ρV R
j,t+1)]− κt, (23)

V R
j,t = v(εRj,t, εt) + βV R

j,t+1 (24)

where v(·) is a twice continuously differentiable function that governs utility derived from
individual exposure εPj,t ∈ EPt , P = S, I, R, and aggregate exposure εt ∈ Et. The structure
of these continuation values produces the typical incentives: susceptible agents will limit
their exposure in order to avoid the drop-off in utility when contracting the disease. Sick
and removed face no explicit rewards for restricting their contact rate. Consistent with
the aggregator specified above, susceptible individuals consider φj,t = ψtεj,tε

I
t ιt as their

individual infection probability.8

In addition to C2, we make the following assumption on the functional form of v(·, ·):

Assumption 4 Monotonicity: v is weakly increasing in both arguments and satisfies

lim
εj→ε̄

∂1v(εj, ε) = 0, lim
ε→ε̄

∂1v(εj, ε) ≥ 0. (25)

where ∂xv(·, ·) denotes the partial derivative of v with respect to the x-th argument.
Our second assumption is that individual and aggregate exposure are gross complements:

8Note that this infection probability does not have to coincide with the average infection rate, but will
do so in an equilibrium.
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Assumption 5 Supermodularity:

∂2v(εj, ε)
∂εj∂ε

> 0. (26)

The direct cost of sickness κt is assumed to be constant and will be calibrated to reflect
the relative disutility from sickness.9 We do not model long-term repercussions from
infections explicitly. This allows us to not further distinguish removed agents who got
vaccinated from removed agents who had to undergo the disease. This comes at some cost
of realism that we are willing to accept since it points in the direction of more aggressive
exposure.10

2.7 Partial equilibrium: optimal exposure choices

The partial equilibrium of the model is a triplet of of exposure choice sequences that we
denote by {εS, εI , εR} = {εSt , εIt , εRt }t≥0. Since agents’ are homogeneous across subgroups,
we solve their representative problems by backward induction and retrieve agent-specific
subscripts when needed.
Removed agents choose

εRt = arg max
εR

j,t∈E
R
t

[
v(εRj,t, εt) + βV R

j,t+1

]
(27)

By monotonicity, optimum is achieved at maximum exposure, max ER ≡ τt. Thus we set

εRt = τt, V R
t =

∞∑
s=t

βs−tv(τs, εs), ∀t (28)

which allows us to fully trace out removed agents’ utility and optimal exposure by the
state-contingency of τt, i.e. once Pt is known.
In turn, exposure of infected agents is given by

εIt = arg max
εI

j,t∈E
I
t

[
v(εIj,t, εt) + β(1− δt)[(1− ρ)V I

j,t+1 + ρV R
t+1)]− κt

]
(29)

Again, monotonicity implies that infected agents choose max EIt = ε̄It so that both V I
t ,

V R
t and εIt , εRt can be traced out once Pt is known. Susceptible agents’ exposure involves

9The constancy of these utility costs across agents helps us to abstract from expectations over idiosyn-
cratic variables and does not change the fundamental decisions of susceptible agents, but only the
ex-post distributions of utility losses.

10Personal estimates of the probability and the long-term repercussions of (health-)hazards are usually
underestimated, as has been illustrated by an extensive literature (see e.g. Slovic (1987) and Tversky
and Kahneman (2013) for discussions and evidence of behavior under uncertainty.
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a trade-off:

εSt = arg max
εS

j,t∈E
S
t

[
v(εSj,t, εt) + β{νtV R

j,t+1 + (1− νt)[(1− φj,t)V S
j,t+1 + φj,tV

I
j,t+1]}

]
, (30)

We are interested in the network externalities so we first look at their exposure choice
under the assumption that the continuation values V S

j,t+1, V I
j,t+1 and V R

j,t are known, which
is w.l.o.g. since the exposure choice does not update continuation values in the partial
equilibrium.
Given the continuation values, agents solve a canonical problem under uncertainty:

εSt = arg max
εS

j,t∈E
S
t

[
v(εj,t, εt) + β{νtV R

j,t+1 + (1− νt)[(1− φj,t)V S
j,t+1 + φj,tV

I
j,t+1]}

]
(31)

In contrast to removed and infected agents, susceptible agents face the trade-off between
getting infected (facing the lower continuation values of infected agents) and the marginal
utility of exposure.
Individuals do not take into account the impact of their choices εj,t on the collective
exposure εt nor on the overall prevalence of the disease, giving rise to the typical infection
externality. In addition to the infection externality, susceptible agents are subject to
higher marginal utilities given higher aggregate exposure by other agents. The infection
externality implies that overall exposure is usually too high, while the second externality
can both amplify and mute the infection externality in an equilibrium.
As we will illustrate in what follows, susceptible agents implicitly play (anti-)coordination
games with other susceptible agents when finding their optimal exposure. To see this,
note that their first-order conditions for interior solutions are given by

∂v(εSj,t, εt)
∂εSj,t

= β(1− νt)ψtεIt ιtγj,t (32)

i.e. susceptible agents balance the benefits of increased exposure with the expected cost
of getting infected which is given by the differences in further continuation values defined
by:

γj,t = V S
j,t+1 − V I

j,t+1 (33)

A symmetric pooling equilibrium γj,t = γt immediately implies εSj,t = εSt and thus that
the solution to the interior optimality condition in t defined by (32) plus the boundary
restrictions imposed by εSt ∈ ESt generate a correspondence of best-response function of
susceptible exposure choices to other susceptible agents’ exposures, given their perceived
infection probability:

εSj,t = BR(εSt ;φj,t, γj,t) (34)

10



Let ε̂Sj,t be the solution to (32). Then (34) has the functional form

BR(εSt ;φj,t, γj,t) = min{ε̄,max[ε̂Sj,t, ε]} (35)

2.8 Equilibrium

An equilibrium of the epidemiological system under endogenous exposure is given by the
sequences of optimal exposures E = {εSt , εIt , εRt }t≥0 and the consistent evolution of the
population aggregates P = {St, It, Rt, Dt}t≥0. Each equilibrium can be then be indexed
by sequences of the parameters and time-variant functions in Πt = {νt, ψt, ρt} as well
as the starting values P0. Each such equilibrium is associated with consistent sequences
of value functions of susceptible, infected and susceptibles V = {V S

t , V
I
t , V

R
t }t≥0, policy

parameters τt = τ(Pt) and case-fatality rates δt = δ(Pt).
Generally, the collection of C2 best-response functions (34) are continuous and time depen-
dent maps from ESt into itself, ESt 7→ BRt(ESt ), so that standard definition of local stability
and the associated fixed point theorems apply within periods.11 The set of strategies of
agents is restricted by the non-repeated nature of interaction between susceptible agents,
hence they cannot commit to sequences of exposure choices {εSt } and seek equilibria in
strategies that are characterized by period-per-period actions.
We use a Nash-equilibrium concept that involves two requirements: (i) equilibria are ro-
bust to perturbations of public exposure, i.e. they are stable under aggregator F (ii)
perceived infection probabilities and aggregate infection rates coincide. (iii) agents’ ex-
posure choices are mutual best-responses.
Formally, each equilibrium is thus characterized by

1. The law of motion of the epidemiological model

Pt+1 = H(Et,Pt) (36)

2. Equivalence of perceived and actual infection probabilities

φj,t = φt = φ(Et,Pt) (37)

3. Susceptible agents play their mutual best-responses, while removed and infected
agents maximize their exposures:

εRt = τt, εIt = ε̄It , εSt = BR(εSt , φj,t, γj,t), ∀t. (38)

11Since the best-response functions map from a compact subset of Euclidean space Rn into itself, the set
of candidate equilibria is non-empty according to Brouwer’s fixed point theorem.
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Since we will focus on symmetric equilibria where agents have equivalent perceptions of
φj,t and their expected continuation values coincide (γj,t = γt), we will suppress agent
specific arguments for the analysis below and use shorthand

BRt(εSt ) ≡ BR(εSt , φj,t, γj,t) (39)

for notational convenience.

2.9 Multiplicity of laissez-faire equilibrium: the case for coordination

The decentralized equilibrium in the presence of network externalities might not be unique.
This observation implies a case for coordinating susceptible agents on a more desirable
equilibrium. To see this consider the following example utility function:

v(εj,t, εt) = υ · [(εj,t − ε)εt]1−θ (40)

where υ is a scaling parameter and θ ∈ [0, 1) governs the strength of the network effect.
For notational convenience, let

ϕt := υ(1− θ)
β(1− νt)εItψtιt

. (41)

Optimality condition (32) determines susceptible agents’ best-response exposure in inte-
rior solutions as

ε̂Sj,t = ε+
[
ϕtε

1−θ
t

γj,t

]1/θ

(42)

which for symmetric equilibria γj,t = γt conveniently produces a version of the best-
response function (34):

BRt(εSt ) = min

ε̄, ε+
(
ϕt
γt

)1/θ

ε
(1−θ)/θ
t

 (43)

where aggregator εt = εSt ε
I
t implies that mutual best-responses BRt(εSt ) = εSt can result in

global pooling equilibria of the type εSj,t = ε̄,∀j or, with sufficient curvature, εSj,t = ε̌St , ∀j
with ε̌St being determined by the roots of the polynomial equation

ε+
(
ϕt
γt

)1/θ

(ε̌St εIt )(1−θ)/θ − ε̌St = 0 (44)

Note that the slope of the best-response function (43) is monotonically increasing and
strictly smaller than unity for exactly one value εt := ε̌t and strictly larger else. Thus the
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equation (44) has at most two roots, which we call εLt and εHt , with εLt < εHt . These rest
points, if in ESt , are associated with derivatives smaller and larger than unity in εSt -space,
respectively, so that εLt is generally stable and εHt is unstable. Except for the case when
εHt = ε̄, ε̄ is only a candidate for an equilibrium when desired exposure of all agents is
larger than the upper bound of ESt so that ε̄ is a stable equilibrium.
Summing up, there always exists one stable equilibrium, which might not be unique.
The two stable equilibria are εLt and ε̄, which coexist if and only if εLt < ε̄. We refer
to εLt as the (decentralized) lockdown equilibrium, whereas ε̄ indexes a business-as-usual
reference. Due to the infection externality, the high-exposure equilibrium will generally
not be Pareto-optimal and therefore constitutes a coordination role for a public health
policy in addition to its role in addressing the infection externality. Such an agency faces
both the task to coordinate agents on the more desirable equilibrium, and, in case of a
unique equilibrium, to enforce the optimal level of aggregate exposure in the business-
as-usual benchmark by restricting ESt accordingly. We show in our simulations below
that lockdown policies can help to prime susceptible agents on the (often more desirable)
lockdown equilibrium.
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3 Calibration
Our calibration strategy involves three steps: (i) calibrating epidemiological parameters
and functional forms for ψt, δt using estimates from the literature; (ii) calibrating model
moments to ensure vaccination rate νt fully eradicates the epidemic after at least T = 300
periods;, sensitivity of CFR δt to health-sector bottlenecks; (iii) calibrating the cost of
sickness to match a loss in continuation values consistent with model statistic Pt close to
observed moments in the data.
All parameters used for the numerical simulations below can be found in Table 1.

3.1 Epidemiological parameters

We use the following values of the epidemiological parameters in our simulations below:
In our calibration of ψ we use the estimated values provided in Lounis and Bagal (2020).
In their analysis, using the early stages of the pandemic in Algeria Lounis and Bagal (2020)
estimate ψ around 0.35, We are aware of the fact, that in the standard SIR-framework
(Kermack and McKendrick (1927)), contact rates and contact transmission rates are hard
to disentangle, due to endogeneities as our model also suggests.
Our calibration of the baseline death rate, follows the the predicted deat rate in the ab-
sence of any healthcare bottlenecks provided by Rossman et al. (2021).
The calibration of the weekly recovery rate ρ follows the assumption that patients recover
after an average of two weeks, this is in line with most of the literature such as Baud et al.
(2020) and Lounis and Bagal (2020). Thus we set our weekly recovery rate to ρ = 0.28.
It also provides the nice advantage that infection numbers in any point in time are com-
parable to observed 14-day incidences. Note that we do not take heterogeinities in the
population into account. However this could be done in future research.
The immunization rateν is calibrated such that herd immunity(σh : It+1 < It∀ε) is reached
after T periods. The vaccine arrives after 100 periods. This ensures the end of the pan-
demic at the end of our simulation. In this particular case this means ν = 0.005.
Calibrating the boundaries for private exposure ε and ε̄ is a challenging task for multiple
reasons. Firstly, epidemiological data is available on the aggregate which makes it difficult
to deduce individual upper and lower bounds for exposure, in particular in the presence of
superspreading. Secondly, data on reproduction numbers vastly differs across countries,
time and estimation strategies. Moreover, severe issues of endogeneity arise due to the
heterogeneity in risk perceptions, lack of information and, in accordance with the pre-
dictions of our model, the contact restrictions and other NPIs imposed by the respective
(local) governments.
We use the following tentative strategy to pick numbers of ε̄ and ε: given estimates of
(i) base reproduction number R0, (ii) CFR δ̂, (iii) average duration of the disease ρ̂ (iv)
mean estimates of the infection rates at contact ψ̂, we use S0 = N0 = P0 = 1 to obtain
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an estimate for the upper bound of aggregate infections ε̄ from the model’s equation for
the starting reproduction number

R0 = 1− ρ̂− δ̂ + ψ̂ε0 · 1 (45)

Consistent with our model above, we use the following identification assumptions to trace
out the subgroups’ maximum exposure in the absence of contact restrictions: (i) estimates
of R0 coincide with ε0 = εS0 ε

I
0 = ε̄2 under the aggregator F ; (ii) mean estimates of the

reproduction number R0 are independent of seasonality in ψt. Using the conservative
estimate of R0 = 2 (following Achaiah et al. (2020)), we can determine the upper bound
for aggregate exposure at √ε0 = 1.91.

Table 1: Parametrization*

Definition Notation Calibrated by Value

Contact transmission rate ψ Lounis and Bagal (2020) 0.350

Case-fatality rate δ Rossman et al. (2021) 0.005

Recovery rate ρ Lounis and Bagal (2020) 0.280

Immunization rate ν Herd immunity after T 0.005

Maximum exposure ε̄ Maximum reproduction rate 1.916

Minimum exposure ε Minimum reproduction rate 0.493

Seasonal volatility of α Liu et al. (2021) 0.5

Containment effectiveness q Detection rate of 10% 0.9

Triage incidence ιmin Rossman et al. (2021) 0.001

Full triage incidence ιmin Rossman et al. (2021) 0.05

Maximum CFR δmax Ritchie et al. (2020) 0.025

Discount factor β Long-run market returns 0.95 1
52

Cost of sickness κ 5% difference V S − V I 11.77

Concavity of utility θ 5% difference V S − V I 0.6

Rel. weight on social utilitiy υ 5% difference V S − V I 0.65

*Rates are on weekly basis.

3.2 Functional Forms

We calibrate four functional forms: (i) the exposure aggregator F ; (ii) the utility function
v; (iii) seasonality of transmission psit (iv) bottleneck-sensitivity of the CFR δ.
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For the utility function we use

v(εj,t, εt) = υε1−θ
j,t + (1− υ)[(εj,t − ε)εt]1−θ (46)

This form satisfies assumptions (A4) and (A5). Our calibration for parameters υ and θ.
The functional form of our seasonal effect on ψ assumes that changes in temperature
and solar radiation over the year largely outweigh other fluctuation. This finding is also
supported by own calculations based on data from Munoz (2020). Thus our ψt follows a
sine function centered around the average ψ, peaking in winter while generating the lowest
ψt in the summer. We calibrate the amplitude of this function in line with the findings
of Liu et al. (2021) to α = 0.5. This means that ψt = 1.5ψ in winter and ψt = 0.5ψ in
summer.
We calibrate the state-dependent function δt to match the results of Rossman et al. (2021).
We assume that δ takes a quadratic form implying that, from a threshold imin, δ increases
until the higher estimates for case fatality rates in western Europe (?) are reached. Thus
δ(·) takes the functional form δ(It) = min{δmax, 408I2

t − 0.4It + δ}. We are aware of the
fact, that δ(·) can influence the optimal lockdown measures significantly, at least on a
quantitative level. However, qualitative results are not affected in our simulations.

3.3 Preferences and cost of sickness

A vast literature has used market returns to calibrate the discount factor β in agents
optimization so we stick to the value that is common. Obtaining values for θ, υ and the
cost of sickness κ is more intricate. In our calibration these parameters are commonly
chosen to produce infection rates and death counts under the baseline scenario that are
consistent with observations in countries that did not impose any contact restrictions.
Hence, we calibrated κ to match a loss of 5% of the steady-state continuation values
of infected agents. Moreover, we choose conservative values of υ = 0.2 and θ = 0.6 to
contain the effects of curvature and network effects in the utility derived from private and
aggregate exposure activity.
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4 Results
In what follows, we discuss our three main scenarios: (i) a baseline scenario: no public
restriction measures are in place and agents coordinate decentrally on their optimal expo-
sure (“No measures”); (ii) “optimal lockdowns”: length, duration and trigger-threshold of
lockdowns maximize ex-ante utility of susceptible agents, across all such lockdown poli-
cies (iii) optimal gradual contact restrictions: exposure is constrained in dependence of
aggregate incidence such that ex-ante utility of susceptible agents is maximized (“optimal
gradual/smooth measures”).
Figure 1 illustrates the common development of the number of susceptibles, infected, re-
moved and demised agents for all three scenarios. Table 3 reports our findings for the
optimal policy in comparison to the baseline. Interestingly, agents ex-ante prefer the

Table 2: Welfare*

Scenario Threshold trigger Max. exp. restrictions Welfare

Baseline: no measures - ε̄ = 1.9161 0.9703

Opt. lockdowns 0.0050 τL = 1.2045 0.9828

Opt. gradual measures 0.0054 τt = 1.4356 0.9795

*Welfare is given by ex-ante utility per st. st. utility of susceptible agents: V S
0 /V
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Figure 1: Evolution of epidemic for all three scenarios.

lockdown policy over both the baseline scenario without interaction and the policy regime
where contact restrictions are lifted gradually. In the following we explain this surprising
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result and try to derive plausible policy conclusions as well as limitations of the presented
analysis.

4.1 Lockdown Scenarios

Figure 2 illustrates how optimal lockdowns constrain individual exposure. In contrast to
the laissez-faire case, agents are send into lockdown significantly sooner than when agents
decide to reduce their private exposure endogenously. Moreover, the exposure restrictions
in this optimum require agents to limit their private exposure much stronger. Virtually
all exposure in the optimal lockdown scenario is determined by public health measures,
i.e. there is severe intervention necessary to address the infection externality that would
prevail else. Somewhat counterintuitively, optimal lockdowns last comparably long (20
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Figure 2: Contact restrictions and implied exposure by agents.
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Figure 3: Present value of infected and susceptible agents’ utilities.

weeks in our simulations) and are imposed starting at incidence values of 0.005 (i.e. at
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500 infected per 100,000 agents). Testing for a broad range of values for the triggering
threshold ῑ, the length of lockdowns n and the strictness of contact restrictions τL, we find
that agents in the model ex-ante prefer more prolonged lockdowns that are associated with
decisive thresholds. Appendix B lists our computed scenarios and the associated welfare
implications.
Looking at the evolution of agents’ welfare in figure 3 shows that much of the welfare gain
can be explained by the sharp drop of welfare of infected agents in the scenario without
interventions, which by means of infection probabilities also constitutes a significant part
of susceptible agents’ utility. Prolonged lockdowns that are scheduled early and that
decisively restrict agents’ exposure prevent this sharp decline in agents utility and thus
“flatten the curve” until the vaccine arrives.

4.2 Gradual NPI

Figure 4 illustrates the contact restrictions and the associated exposure of susceptibles.
When constrains on exposure are gradually adjusted, public health measures will start
earlier to constrain individual exposures. As in the lockdown policy scenarios, agents’
exposure will be constrained and thus fully determined by the public measures.
As before, agents are willing to trade the sharp decline in expected utilities during the
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Figure 4: Contact restrictions and implied exposure by agents.

most severe weeks of the epidemic against the high exposure they are inducing in the
beginning of the epidemic. The utility difference between gradual NPIs and the strict
lockdown policies (which both dominate the baseline scenario without any restructions)
is partially explained by the earlier sacrifices of exposure: susceptible agents dislike the
gradual prescription of low exposures (when incidence is low) but are much in favor of
very pro-active policies when incidence is high.
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Figure 5: Present value of infected and susceptible agents’ utilities.

These observations have an interesting implication: contact/exposure restrictions are un-
popular ex-ante, i.e. when they are taking place in the near future — even when they
are more effective in fighting the overall death and infection counts ex-post, as can be
seen in figure 1. This is why political actors might be tempted to delay interventions into
the future (even when they are less stringent) and will find broad support for reluctant
policies while incidence is low.

5 Conclusion
In this paper we stressed the role of individual aversion to health hazards and studied the
importance of network effects in bringing about endogenous exposure in the decentralized
equilibrium.
Our main results are as follows: first, we confirmed the conventional wisdom that higher
infection rates reduce individual’s willingness to expose themselves and that exposure in
equilibrium rests on coordination between individuals due to network externalities. This
is also why public health measures that restrict certain social activities facilitate decen-
tralized coordination.
Second, we evaluated two different styles of containment strategies, optimal lockdown
policies and gradual contact restrictions in lockstep with rising values of incidence. Inter-
estingly, harsh lockdowns are preferred to gradual increases in the stringency of contact
restrictions. We attribute this finding to the fact that optimal lockdowns hit later and
thus are discounted ex ante.
Across all scenarios, we find that agents generally prefer intervention over the laissez-faire
scenario even when the available NPIs are not first-best, i.e. do not address the infection
externality directly. The expected utility benefit mostly accrues to infected agents who
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face a significantly lower probability of demise which amplifies the utility of susceptible
agents via their continuation values.
Our results also suggest that there are important politico-economic challenges involved
with conducting stringent policies when incidence rises, since such policies are the least
popular when they are close to the present, making agents oppose smaller interventions
upfront, i.e. when they are very effective. Focusing on the overall death toll or infection
count as a measure of welfare, we find that gradual policies are more promising than strict
and prolonged lockdowns.

References
Achaiah, N. C., S. B. Subbarajasetty, and R. M. Shetty (2020). R0 and re of covid-19: Can
we predict when the pandemic outbreak will be contained? Indian Journal of Critical
Care Medicine: Peer-reviewed, Official Publication of Indian Society of Critical Care
Medicine 24 (11), 1125.

Baud, D., X. Qi, K. Nielsen-Saines, D. Musso, L. Pomar, and G. Favre (2020). Real
estimates of mortality following covid-19 infection. The Lancet infectious diseases 20 (7),
773.

Bhattacharya, J., S. Chakraborty, and X. Yu (2021). A rational-choice model of covid-
19 transmission with endogenous quarantining and two-sided prevention. Journal of
Mathematical Economics, 102492.

Chang, R. and A. Velasco (2020). Economic policy incentives to preserve lives and liveli-
hoods. Technical report.

Chudik, A., M. H. Pesaran, and A. Rebucci (2020). Voluntary and mandatory social
distancing: Evidence on covid-19 exposure rates from chinese provinces and selected
countries. Technical report.

Collard, F., C. Hellwig, T. Assenza, S. Kankanamge, M. Dupaigne, N. Werquin, and
P. Fève (2020). The hammer and the dance: equilibrium and optimal policy during a
pandemic crisis.

Eichenbaum, M. S., S. Rebelo, and M. Trabandt (2020). The macroeconomics of epi-
demics. Technical report, National Bureau of Economic Research.

Gerlagh, R. (2020). Closed-form solutions for optimal social distancing in a sir model of
covid-19 suppression.

Gollier, C. (2020). Pandemic economics: optimal dynamic confinement under uncertainty
and learning. The Geneva Risk and Insurance Review 45 (2), 80–93.

Horimoto, T. and Y. Kawaoka (2001). Pandemic threat posed by avian influenza a viruses.
Clinical microbiology reviews 14 (1), 129–149.

21



Jones, C. J., T. Philippon, and V. Venkateswaran (2020). Optimal mitigation policies
in a pandemic: Social distancing and working from home. Technical report, National
Bureau of Economic Research.

Kermack, W. O. and A. G. McKendrick (1927). A contribution to the mathematical
theory of epidemics. Proceedings of the royal society of london. Series A, Containing
papers of a mathematical and physical character 115 (772), 700–721.

Koh, W. C., L. Naing, and J. Wong (2020). Estimating the impact of physical distanc-
ing measures in containing covid-19: an empirical analysis. International Journal of
Infectious Diseases 100, 42–49.

Liu, X., J. Huang, C. Li, Y. Zhao, D. Wang, Z. Huang, and K. Yang (2021). The role of
seasonality in the spread of covid-19 pandemic. Environmental research 195, 110874.

Lounis, M. and D. K. Bagal (2020). Estimation of sir model’s parameters of covid-19 in
algeria. Bulletin of the National Research Centre 44 (1), 1–6.

Munoz, S. J. (2020). Era5-land hourly data from 1981 to present, accessed: 2021-04-01.
Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

Phucharoen, C., N. Sangkaew, and K. Stosic (2020). The characteristics of covid-19
transmission from case to high-risk contact, a statistical analysis from contact tracing
data. EClinicalMedicine 27, 100543.

Ritchie, H., E. Mathieu, L. Rodes-Guirao, C. Appel, C. Giattino, E. Ortiz-Ospina,
J. Hasell, B. Macdonald, D. Beltekian, and M. Roser (2020). Coronavirus pandemic
(covid-19). Our World in Data.

Rossman, H., T. Meir, J. Somer, S. Shilo, R. Gutman, A. B. Arie, E. Segal, U. Shalit,
and M. Gorfine (2021). Hospital load and increased covid-19 related mortality in israel.
Nature communications 12 (1), 1–7.

Slovic, P. (1987). Perception of risk. Science 236 (4799), 280–285.

Slovic, P. E. (2000). The perception of risk. Earthscan publications.

Toxvaerd, F. (2020, March). Equilibrium Social Distancing. Cambridge Working Papers
in Economics 2021.

Tversky, A. and D. Kahneman (2013). Judgment under uncertainty: Heuristics and
biases. In HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION
MAKING: Part I, pp. 261–268. World Scientific.

22



Appendix A: Algorithm
We use the following algorithm to compute equilibrium sequences of the epidemic. To
initiate the algorithm, we

• choose simulation length T , a norm for convergence and a stopping rule;

• parametrize the model;

• set {τt} = ε̄;

• guess a sequence of {εSt }t≥0;

• compute steady values of V S, V I , V R that apply starting from T + 1.12

Then iterate over the following steps:

1. Simulate the epidemic using H(·) and the guess of {εSt }t≥0 as well as the initial
values P0 to obtain {Pt}.

2. Compute sequences of policies {τt} and other state-contingent values using {Pt}.

3. Integrate backwards by starting from V R
T , V I

T and V S
T and sequentially compute

optimizers {εRt , εIt , εSt } given {Pt} and {τt}.

4. Update {Et} and report results in case of convergence. Else, reiterate with the
updated sequence {εSt }t≥0.

Table 2 describes the values chosen in our numerical exercise.

Table 2: Algorithm details*

Definition Notation Value

Time spells in a year ω 52

Duration of simulation T 300

Updating weight λ 0.99

Stopping rule 1e-4

*All simulations are ran in MATLAB under a standard INTEL engine.

12For this step, we set the st. st. infection probability at a value φ = 1e − 6, which cannot start the
epidemic anew and is roughly the probability to get infected with influenza.

23



Appendix B: Lockdown Policies

Lockdown policies
Threshold trigger Duration Maximum exposure Welfare

0.0050 5 1.2045 0.9820
0.0050 5 1.8449 0.9734
0.0050 10 1.2045 0.9825
0.0050 10 1.8449 0.9733
0.0050 20 1.2045 0.9828
0.0050 20 1.8449 0.9732
0.0088 5 1.2045 0.9808
0.0088 5 1.8449 0.9734
0.0088 10 1.2045 0.9814
0.0088 10 1.8449 0.9734
0.0088 20 1.2045 0.9802
0.0088 20 1.8449 0.9733
0.0125 5 1.2045 0.9791
0.0125 5 1.8449 0.9734
0.0125 10 1.2045 0.9796
0.0125 10 1.8449 0.9734
0.0125 20 1.2045 0.9814
0.0125 20 1.8449 0.9733
0.0163 5 1.2045 0.9774
0.0163 5 1.8449 0.9733
0.0163 10 1.2045 0.9796
0.0163 10 1.8449 0.9733
0.0163 20 1.2045 0.9809
0.0163 20 1.8449 0.9734
0.0200 5 1.2045 0.9753
0.0200 5 1.8449 0.9729
0.0200 10 1.2045 0.9765
0.0200 10 1.8449 0.9732
0.0200 20 1.2045 0.9793
0.0200 20 1.8449 0.9733
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Appendix C: Gradual exposure restrictions

Gradual exposure restrictions
Threshold trigger Duration Maximum exposure Welfare

0.0050 5 1.8449 0.9795
0.0054 5 1.8449 0.9795
0.0057 5 1.8449 0.9795
0.0061 5 1.8449 0.9795
0.0064 5 1.8449 0.9794
0.0068 5 1.8449 0.9794
0.0071 5 1.8449 0.9794
0.0075 5 1.8449 0.9794
0.0079 5 1.8449 0.9794
0.0082 5 1.8449 0.9794
0.0086 5 1.8449 0.9794
0.0089 5 1.8449 0.9793
0.0093 5 1.8449 0.9793
0.0096 5 1.8449 0.9793
0.0100 5 1.8449 0.9793
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Figure 6: Welfare comparison across threshold triggers.
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